Как будет РЕВЕРСИВНЫЙ ГРЕБНОЙ ВИНТ по-английски? Перевод слова РЕВЕРСИВНЫЙ ГРЕБНОЙ ВИНТ

3744618602_w640_h2048_grebnoj_1-2 Статьи

Маркировка винтов

Маркировку наносят на ступицу или лопасти в дюймовых размерах.

На примере Yamaha:

11 1/4 х 15 – G

Первое число обозначает диаметр лопастей, второе – шаг винта.

Некоторые производители добавляют в маркировку количество лопастей и направление вращения винта, например:

13х19 3RH, или 3х10-3/8х11 R, где цифра «3» — количество лопастей, RH или R – правое вращение.

Если на винт нанесен только номер по каталогу, например, 3231-100-15, то расшифровка пишется на упаковке.

Количество лопастей гребного винта

По количеству лопастей гребные винты бывают:

  • Двухлопастные;
  • Трехлопастные;
  • Четырехлопастные.

Двухлопастные винты чаще устанавливаются на маломощных моторах.

3744618602_w640_h2048_grebnoj_1-9467291

Трех- и четырехлопастной винт более распространен на лодочных моторах.

Трехлопастной винт обеспечит наибольшую скорость судну. Он одинаково хорошо работает на любых скоростях, сохраняя высокий КПД и низкий уровень вибрации.

3744619048_w640_h2048_grebnoj_2-1816803

Четырехлопастной винт обеспечивает более быстрый старт, низкий уровень вибрации при использовании с мощным двигателем и плавный ход.

3744619644_w640_h2048_grebnoj_3-5123794

Отличие между трехлопастным и двухлопастным винтом в том, что трехлопастной винт имеет преимущества в скоростных качествах. Чем больше скорость, тем менее эффективным становится четырехлопастной винт.

В то же время четырехлопастной винт имеет лучшие характеристики при разгоне и выходе на режим глиссирования. Он применяется для водных развлечений.

3744620230_w640_h2048_grebnoj_4-7418497

Трехлопастные винты для подвесных моторов наиболее распространенные и популярные, так как имеют наивысшую скорость и слаженную работу. Четырехлопастные имеют более быстрое ускорение, лучшую тягу, плавную работу, но меньшую максимальную скорость, по сравнению с 3-х лопастным, также на 4-лопастном винте можно достичь экономии топлива в крейсерском режиме.

Диаметр винта

Внешний диаметр винта – это диаметр окружности, описываемой внешними кромками лопастей. Больший диаметр применим для груженых и тяжелых лодок. Малый – для легких и скоростных.

3744621280_w640_h2048_grebnoj_1-5277755

Чем больше диаметр винта, тем больше становится упор. С помощью большего диаметра винта можно увеличить тяговые свойства двигателя лодки, но проиграть в скорости.

Шаг винта

Шаг винта – это расстояние, которое пройдет винт за один оборот в воде. Чем больше шаг, тем это расстояние будет больше. Шаг гребного лодочного винта измеряется в дюймах. Каждый дюйм шага равен приблизительно 150 +/- 50 об/мин.

3744622627_w640_h2048_grebnoj_5-5744647

Теоретически винт с 14-дюймовым шагом за один полный оборот будет двигать лодку на 14 дюймов. В действительности так не получается. Это отклонение называется «проскальзывание».

3744623310_w640_h2048_grebnoj_6-4050824

Расшифровка обозначений шага и диаметра на примере лодочного мотора Yamaha 15 л. Шаг винта составляет 9 ¼ x 11. Цифра «9 ¼» — это диаметр винта. В технических характеристиках это значение всегда пишется первым.

Следующая за ней цифра «11» является шагом винта и измеряется в дюймах. Это расстояние, которое винт пройдет за один полный свой оборот. Чем больше шаг винта, тем более скоростным считается гребной винт. Но чем меньше шаг винта, тем более грузовым считается винт.

Винт с низким шагом имеет лучшее ускорение и тягу. Винт с высоким шагом — меньшее ускорение, но больший потенциал для достижения высоких скоростей.

Правильный подобранный винт позволить двигателю достичь максимальных оборотов, заданных производителем мотора.

Диаметр и шаг винта производители указывают на ступице или на лопасти. Единых стандартов нанесения этой технической информации нет. Все данные по винту дублируются на упаковке.

Проскальзывание винта

Коэффициент проскальзывания гребного винта — это процентная разница между реальным и расчетным шагом винта. Грубо говоря — это сколько воды убежало с лопастей, пока винт делал один оборот, то есть величина, обратно пропорциональная КПД винта.

3744624059_w640_h2048_grebnoj_7-8684838

Больше всего скользит на малых оборотах — больше воды успевает убежать от ступицы винта к краю лопасти. Поэтому для уменьшения проскальзывания увеличивают диаметр винта и/или дисковое отношение.

Соответственно, чем быстрее крутится винт, тем больше воды он толкает в нужную сторону (назад), а не разбрасывает ее по сторонам. Поэтому же у винта с большим шагом выше КПД.

Проскальзывание зависит от множества величин: от самого винта, плотности и вязкости жидкости, формы корпуса, загрузки лодки, передаточного отношения (которое отвечает за обороты винта) и др. переменные. Моторы разной мощности, выдающие одинаковые обороты на винте, покажут одинаковое значение проскальзывания.

Шлицевая посадка винта на вал

В большинстве случаев используется шлицевая посадка винта на гребной вал. Разные производители оснащают винты различным количеством шлиц.

Гребные винты также могут отличаться диаметром ступицы.

3744624732_w640_h2048_grebnoj_8-1726495

На гребном валу винт фиксируется гайкой и контрится шплинтом. Современные двигатели оснащены выхлопом через ступицу винта. Этот способ считается более эффективным. Такой винт оснащен дефлектором для создания области разряжения, чтобы понизить давление на выхлопе, а, следовательно, увеличить мощность лодочного двигателя в целом.

Чтобы при ударе винта о грунт редуктор был надежно защищен, используется резиновая втулка демпфер. Если совпадает диаметр посадки, то технически можно перепрессовать втулку с одного винта на другой. Но для слаженной работы рекомендуется использовать оригинальные винты.

Иногда производители винтов делают втулку съемной, чтобы была возможность один и тот же винт устанавливать на разные моторы.

Шпоночная посадка винта на вал

На лодочных моторах небольшой мощности используется посадка винта на шпонку. Для этого на втулке винта имеются специальные пазы. Если винт ударился о препятствие, то шпонка срезается и тем самым защищает шестерни и вал редуктора.

3744625298_w640_h2048_grebnoj_9-2787794

В таких моторах для выхлопа предусмотрено отдельное отверстие под антикавитационной плитой. Это не так эффективно, чем выхлоп через винт, но тоже неплохо работает.

Материал изготовления гребного винта

По материалу гребные винты бывают:

  • алюминиевые (AL);
  • стальные (SS);
  • пластиковые.

В основном используют винты из алюминиевого сплава, так как они берегут редуктор и стоят дешевле, чем остальные.

Пластиковые винты применяются на компактных моторах, мощностью 2-3 лошадиных сил.

Стальные винты применяются на скоростных лодках и катерах. Рекомендованы для эксплуатации на глубоких водоемах, где нет топляков и препятствий в виде порогов, поскольку при налете винта из стали на препятствие есть вероятность выхода из строя редуктора.

Основное преимущество стальных винтов состоит в том, что его лопасти можно сделать максимально тонкими. Если сравнить толщину лопасти стального и алюминиевого винта для однотипных моторов, то можно увидеть, что стальные лопасти гребного винта будут втрое тоньше алюминиевого.

Алюминиевые винты считаются одними из самых популярных. Если лопасти такого винта погнулись, то их можно выпрямить прямо на берегу.

Прочие характеристики гребного винта

Загиб кромки – это небольшой изгиб или выступ на задней кромке лопасти гребного винта. Он позволяет гребному винту цепляться за воду, обеспечивая управление при волнении и в крутых поворотах.

Также загиб снижает вентиляцию и проскальзывания винта. Малый радиус кривизны — важнейшей элемент конструкции гребного винта, для которого должны быть соблюдены точные размеры иначе может вызвать чрезмерный рулевой крутящий момент, люфт и сложность в поддержки оборотов.

Угол увода лопастей

Угол увода лопасти – это угол поворота кромки лопасти относительно основания. Угол увода позволяет изменять ход и подъем судна, а также обеспечивать отличную устойчивость при волнении и при высокой установке мотора.

Угол увода выражается в градусах. Высокий угол лучше подходит для скоростного применения, особенно при высокой установке двигателя, где есть риск проскальзывания и кавитации. Помогает поднять нос судна и уменьшить смачиваемую поверхность.

Для легких и быстрых катеров слишком большой увод лопасти может способствовать их меньшей стабильности на воде, в этом случае лучше выбрать гребной винт с меньшим уводом лопасти. Низкий угол вызывает меньшую нагрузку на двигатель. Помогает удержать нос лодки в низу. Является более распространенном и универсальным.

Как подобрать гребной винт

Подобрать оптимальный шаг винта поможет тахометр. Если мотор выдает 6000 оборотов в минуту, то при правильно подобранном винте на максимальных оборотах он должен выдавать 5800-6000 оборотов.

Если мотор крутит менее 6000 оборотов, требуется понизить шаг винта.

Если лодочный двигатель выдает больше нужных оборотов, нужно его нагружать, повышая шаг винта.

При понижении или повышении шага гребного винта на 1 дюйм, обороты мотора изменяются в среднем на 200 оборотов в минуту.

По соответствию винта мотору и корпусу, можно провести определённую градацию.

Тяжёлый винт. Двигатель не развивает полных оборотов, выход на глиссирование затруднен. Необходимо уменьшать шаг.

Скоростной винт. Максимальные обороты и скорость достигаются только с малой загрузкой и верхнем положении гидроподъёма («трима»).

Универсальный винт. С минимальной загрузкой мотор развивает максимальные обороты, с полной загрузкой позволяет выйти на глиссирование.

Грузовой винт. Позволяет легко выходить на глиссирование с полной загрузкой путём некоторой потери скорости, максимальные обороты достигаются уже со средней нагрузкой.

Слишком лёгкий винт. Лодка сильно недобирает в скорости, мотор превышает максимально допустимые обороты (так называемый «перекрут»), срабатывает ограничитель оборотов. В этом случае нужен винт с большим шагом.

Рекомендуется иметь в запасе дополнительный винт. В идеале оптимально иметь гребной винт грузового и скоростного типа.

Інші статті рубрики

  • 10.08.2022Вибір спорядження для плавання з дихальною трубкою Як правильно вибрати спорядження для плавання з дихальною трубкою, потрібні аксесуари для дайвінга та скелінгу, їх види та опис. На що звернути увагу, вибираючи підводну маску, дихальну трубку, гідрокостюму та ласт.
  • 20.07.2022Види водних атракціонів і видів спорту, екіпування для нихВодяні атракціони та види спорту, їхні види та особливості. Що вибрати для відпочинку і відпочинку на воді для дорослих і дітей. Щоб захистити воду, потрібно екіпіювання.

Продажа лодочных гребных винтов

В ассортименте судовых снастей вы можете выбрать и купить лодочный винт. Данный элемент является частью лодочного мотора и во многом определяет удобство его эксплуатации. Винт влияет на скорость передвижения судна, расход топлива, нагрузку на поршневую группу. При выборе винта необходимо учитывать следующие параметры:

В нашем каталоге можно купить гребной винт Солас и других известных марок. Перед совершением покупки необходимо изучить инструкцию к лодочному мотору, чтобы определиться с моделью. Ее подбирают таким образом, чтобы двигатель достигал среднего либо верхнего рабочего диапазона при максимальной загрузке судна и движении на полном газу.

Если вы эксплуатируете судно при малой загрузке, можно купить лодочный винт с большим шагом. При эксплуатации с полной загрузкой нужна модель с малым шагом. Если загрузка неравномерная, выбирают гребной винт со средним шагом.

Гребные винты Солас

Стоимость изделия и его надежность напрямую зависят от материала изготовления. Для производства конструкций применяют прочный пластик, алюминий и нержавеющую сталь. Специалисты рекомендуют купить винт Солас, для изготовления которого используется нержавеющая сталь или алюминиевый сплав. В линейке бренда представлены гребные винты, которые совместимы с двигателями Yamaha, Honda, Tohatsu, Mercury.

Производителем продукции является компания Solas Science&Engineering, которая расположена на Тайване. Это предприятие поставляет комплектующие ведущим изготовителям стационарных и подвесных лодочных моторов. Линейка бренда включает три серии продукции:

  • лодочные гребные винты классического типа;
  • устройства серии Мульти-Фит;

Тайваньский производитель применяет собственные разработки при создании конструкций. Винты этого бренда имеют особую геометрию лопастей с увеличенной площадью, благодаря чему повышается тяговая мощность, возрастает КПД.

Винт регулируемого шага

Винт регулируемого шага (ВРШ) — это гребной винт, у которого регулируется угол разворота лопастей. Лопасти такого винта разворачиваются специальным механизмом в любое положение в диапазоне «полный вперед — стоп—полный назад», т. в зависимости от степени разворота лопастей, не изменяя работы главного двигателя, судну можно придать или движение вперед, или остановиться на месте, или создать движение назад. При эксплуатации всех видов ВРШ применяется принципиально одинаковая система управления. Гидравлическая система управления ВРШ дает возможность широко использовать в качестве главного двигателя нереверсивные силовые установки (турбины, дизели большой мощности и т. Внедрение ВРШ на судах позволяет улучшить маневренные качества судов. К ним в первую очередь относится уменьшение тормозного пути (за счет быстрого перевода лопастей винта на режим работы заднего хода) и периода торможения. Гашение инерции начинается почти немедленно после дачи команды «Полный назад» (отдельные суда с полного хода останавливаются за 1 мин при тормозном пути 1—1,5 корпуса). На судах с ВРШ облегчается выполнение многих видов маневров при съемке с якоря и постановке на якорь, при швартовке судна к причалу и лагом к другому судну, при расхождении судов для предотвращения столкновений и т. Для выяснения влияния ВРШ на управляемость судна рассмотрим различные режимы его работы.

Судно неподвижно относительно воды. Прямо руль. При даче
При перекладке руля вправо или влево судно будет уклоняться в сторону переложенного руля. С разворотом лопастей в диапазоне переднего хода меняется сила попутного потока и сила набрасываемой струи от винта на руль, в результате чего будет изменяться скорость движения судна вперед, а следовательно, и управляемость.

Судно имеет ход вперед, винт работает назад. Руль прямо. Струя от винта (вращающегося в прежнюю сторону, но имеющего повернутые лопасти, соответствующие заднему ходу) будет действовать не в правый подзор, как у фиксированного винта, а в левый, уклоняя корму вправо, а нос — влево. Уклонение кормы вправо будет увеличиваться еще за счет того, что сила набрасываемого спирального потока начнет действие на перо руля и кормовой подзор слева. Дополнительно сила попутного потока будет воздействовать на винт, уклоняя также корму вправо. Под суммарным воздействием этих сил корма резко пойдет вправо, а нос — влево.

Судно имеет ход назад, винт работает назад. При установившемся движении судна назад и положенном прямо руле на поведение судна оказывает влияние струя воды от винта ВРШ, которая действует в левый подзор, отклоняя постоянно корму вправо. Судно имеет ход назад, винт работает вперед. При переходе с заднего хода на передний (реверс ВРШ) основное влияние на судно будет оказывать струя от винта, набрасываемая на руль справа, в результате корма пойдет влево, а нос — вправо. При перекладке руля влево или вправо нос судна всегда будет уклоняться в сторону переложенного руля.

Анализ эксплуатационной деятельности различных судов с ВРШ (буксиров, БМРТ, пассажирских судов и др. ) показывает значительные преимущества их перед судами с фиксированными винтами, так как ВРШ:
• дает возможность изменять направление движения судна без изменения направления вращения винта, что важно при нереверсивных двигателях;
• позволяет применять дистанционное управление ходами с мостика;
• дает возможность сократить время на реверс судна до 30%;
• увеличивает моторесурс дизельных установок уменьшением числа реверсов двигателя;
• дает возможность использовать при торможении полную мощность двигателя на заднем ходу. Однако ВРШ имеет и серьезные недостатки, например трудность технического выполнения надежного устройства для разворота лопастей и др.

Подбор лодочного винта по модели мотора

Приобретение лодочного мотора – это далеко не все, что потребуется его владельцу. В том случае, если вы жаждете, чтобы двигатель работал с предельной отдачей – нужно правильно подобрать гребной винт для лодочного мотора, так как для разных целей могут применяться разнообразные винты, хотя при всем этом на надувной лодке будет поставлен один и тот же мотор. Затем, чтобы научиться ориентироваться в винтах, вначале нужно научиться терминологии.

Подбор правильного гребного винта — это как подбор авторезины на автомобиль. Вы можете целый год ездить на всесезонке типоразмера, предпочтенного изготовителем, и иметь посредственные показатели, а можно заказать шину, наверняка пригодную под нужный вам тип эксплуатации. И тогда не имеет значения — преодолеваете ли вы бездорожье или гоняете на ровных трассах. С винтом ситуация приблизительно такая же: можно бросить все как есть или правильно подобрать гребной винт, оптимальный для своей лодки, нагрузки и вида применения, получив максимальные параметры с наименьшими расходами горючего. Неверно же подобранный винт грозит не только приуменьшить все значительные характеристики, но и быстро погубить двигатель: все детали подвергаются высоким нагрузкам, что усиливает их износ.

Технические характеристики винтов, необходимые для подбора

В классификации моторных винтов применяется ряд показателей, но ключевыми являются три: диаметр винта, шаг и количество лопастей.

Диаметр винта. Здесь все просто – эта величина означает длину окружности, которую описывают лопасти винта в рабочем положении. У четырехлопастных винтов такой показатель замеряется как расстояние от конца первой лопасти до конца противолежащей. У трёхлопастного требуется замерить длину одной лопасти от конца до середины втулки и умножить эту величину на два.

Шаг винта – величина, которая указывает, до какой степени винт продвинется при одном обороте. Данный показатель всегда следует вторым в маркировке. Нужно брать во внимание, что в маркировке обозначается теоретический шаг, без учета слипа или проскальзывания.

Число лопастей у лодочных винтов обычно три, реже четыре. Трехлопастный винт обычно ставится на лодки длиной до 6 метров, а четырехлопастный – на модели длиной более 6 метров. Двухлопастные винты можно встретить очень редко, в основном на малосильных моторах. При этом трехлопастные лучше могут подойти для высокоскоростного режима, а вот четырехлопастные являются «грузовыми» и лучше всего проявляются себя на крейсерской скорости, при этом их работа «ровнее», чем у трехлопастных заменителей из-за равного количества лопастей и большего дискового отношения.

Диаметр и шаг винта производят важное воздействие на поведение надувной лодки или катера. При большом шаге винт получается «скоростнее», так как за один оборот лодка проходит огромное расстояние. В то же время чем больше диаметр, тем более «тяговитость» у двигателя и он сможет толкать груженую лодку. По этой причине если требуется улучшить скоростные качества, то попробуйте увеличить шаг винта, а если нужно сделать его тяговым – повышайте диаметр или уменьшайте шаг винта. Следите за оборотами вашего двигателя. Они должны находиться в допустимых пределах.

Материалы изготовления лодочных винтов

При подборе исходного материала гребного винта необходимо взвесить все за и против, ориентируясь, где и как будет применяться искомый винт. Как правило, выбор возникает между алюминиевым и стальным винтами. Но также имеют место не столь популярные пластиковые, а равным образом производные из разнообразных сплавов и сочетаний.

Если вы умиротворенно ходите по пресному мелководью без желания носиться и иногда встречаетесь с корягами и прочими нежелательными предметами, то доступный по цене алюминиевый винт станет для вас отличным выбором. При небольшой деформации его можно поправить хоть камнем, а если все-таки случается столкновение с сильным разрушающим воздействием, алюминиевый винт отдаст свою недорогую жизнь во имя сохранения дорогого редуктора, встретив удар на себя. А это наверняка — наименьшая боль, особенно, если не забывать о том, что винт — это расходник. В идеале каждый раз нужно иметь с собой второй — на случай смены активности или внезапного инцидента. С подходящим инструментом поменять его самостоятельно не составит труда. Алюминий — мягкий металл, его форму нарушить сможет встреча даже с чуть заметной бутылкой или корягой, а на мелководье песок стремительно сотрет лопасти что, конечно же уменьшит КПД. Однако его невысокая стоимость и защищенность более значимого редуктора заставляют закрыть глаза на такие мелочи.

Если ваша единственная мечта — это высокая скорость, то прочный стальной винт — то, что вам нужно. Он, конечно, подороже алюминиевого, но и его КПД весьма выше предыдущих версий: качество материала даёт возможность сильно уменьшить толщину лопасти, улучшить зеркальность поверхности, кавитация на него воздействует не так значительно. В связи с этим параметры скорости возрастают на 5–7% в сравнении с алюминиевыми аналогами. При подборе стального винта для лодочного мотора, важно помнить, что ему не страшен песок и незначительный абразив — он не сотрется и даже перенесет несильный удар о бревно или дно, не изменив геометрии лопастей. Но при встрече с камнем надежный винт не погасит всю мощь удара — она перейдет на редуктор и вал, что значительно болезненнее в плане ремонта и кошелька. Иногда выручает пластиковая втулка, берущая удар на себя, но надежнее все же избегать неизвестного мелководья на большой скорости и тщательно следить за показателями эхолота.

Это самый недорогой материал, но при этом не значит, что он очень плохой. Пластиковый гребной винт на 30-50% крепче алюминиевого, абсолютно не поддается коррозии и самое основное – он пластичен. При ударе о дно, пластиковый винт в 75% случаев «сыграет» и выпрямиться после воздействия, приняв на себя довольно большую часть ударной нагрузки и защитив редуктор от удара. Конструкция пластиковых (композитных) винтов позволяет заменить каждую лопасть отдельно, что значительно снижает затраты на владение им. Это качество может дать неоспоримые преимущества над алюминиевыми или стальными винтами.

Как выбрать подобрать хороший гребной винт?

Вам необходим винт для безветренной безмятежной рыбалки с малосильным мотором? Покупайте винт из алюминия или пластика. Количество лопастей значения не сыграет.

Четырехлопастный алюминиевый винт – универсальный и доступный по цене выбор для далеких заплывов на небольшой лодке и даст возможность сэкономить топливо на крейсерской скорости.

Винт из полированной нержавеющей стали – самый лучший вариант, в особенности если вам нужна износостойкость и надежность. При этом для тяжелого судна длиной более 6 метров надежнее подобрать четырехлопастный вариант, а вот для скорости подходят три лопасти.

Что надо знать о гребном винте?

Как работает гребной винт? Гребной винт (рисунок 1) преобразует вращение вала двигателя
в упор — силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей,
обращенных вперед — в сторону движения судна (засасывающих), создается разрежение, а на обращенных
назад (нагнетающих) — повышенное давление воды. В результате разности давлений на лопастях возникает
сила Y (ее называют подъемной). Разложив силу на составляющие — одну, направленную в сторону движения
судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу Т,
образующую крутящий момент, который преодолевается двигателем.

Рисунок 1. Схема сил и скоростей на лопасти винта (правого вращения)

Упор в большой степени зависит от угла атаки α профиля лопасти. Оптимальное значение α, для быстроходных
катерных винтов 4-8°. Если α больше оптимальной величины, то мощность двигателя непроизводительно затрачивается
на преодоление большого крутящего момента; если же угол атаки мал, подъемная сила и, следовательно, упор Р будут
невелики, мощность двигателя окажется недоиспользованной.

На схеме, иллюстрирующей характер взаимодействия лопасти и воды, α можно представить как угол между направлением
вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован
геометрическим сложением векторов скорости поступательного перемещения va винта вместе с судном и скорости
вращения vr, т. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.

Винтовая поверхность лопасти. На рисунке 1 показаны силы и скорости, действующие в каком-то одном
определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Окружная скорость вращения vr зависит от радиуса, на котором сечение
расположено (vr — 2πrn, где n — частота вращения винта, об/с). Скорость же поступательного движения
винта va остается постоянной для любого сечения лопасти. Таким образом, чей больше r, т. чем ближе
расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость vr, а следовательно,
и суммарная скорость W.

Так как сторона va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления
сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы α сохранял
оптимальную неличину, т. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность
с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один
полный оборот винта.

Представить сложную винтовую поверхность лопасти помогает рисунок 2. Лопасть при работе винта как бы скользит по
направляющим угольникам, имеющим на каждом радиусе разную длину основания, по одинаковую высоту — шаг Н, и поднимается
за один оборот на величину Н. Произведение же шага на частоту вращения (H*n) представляет собой теоретическую
скорость перемещения винта вдоль оси.

Рисунок 2. Винтовая поверхность лопасти (а) и шаговые угольники (б)

Скорость судна, скорость винта и скольжение. При движении корпус судна увлекает за собой воду,
создавая попутный поток, поэтому действительная скорость встречи винта с водой va всегда
несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница
невелика — всего 2-5%, так как их корпус скользит по воде и почти не «тянет» ее за собой. У катеров, идущих со
средней скоростью хода эта разница составляет 5-8%, а у тихоходных водоизменшющих глубокосидящих катеров
достигает 15-20%. Сравним теперь теоретическую скорость винта H*n со скоростью его фактического
перемещения va относительно потока воды (рисунок 3). Пусть это будет «Казанка», идущая под
мотором «Вихрь» со скоростью 42 км/ч = (11,7 м/с). Скорость натекания воды да винт окажется на 5% меньше:

H*n-va=(1-0. 05)*11. 7=11. 1м/с

Гребной винт на «Вихре» имеет шаг Н=0. 3 м и частоту вращения n=2800/60=46. 7 об/с. Теоретическая скорость винта:

H*n=0. 3*46. 7=14 м/с.

Таким образом, мы получаем разность

H*n-va=14-11. 1=2. 9м/с.

Эта величина, называемая скольжением, и обуславливает работу лопасти винта под углом
атаки α к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах
называется относительным скольжением. В нашем примере оно равно

Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15%) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных
мотолодок и катеров скольжение достигает 15-25%, у тяжелых водоизмещающих катеров 20-40%, а у парусных яхт,
имеющих вспомогательный двигатель, 50-70%.

Рисунок 3. Соотношение скорости лодки и осевой скорости винта.

Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД,
т. отношения полезно используемой мощности к затрачиваемой мощности двигателя. Полезная мощность или ежесекундное
количество работы, используемой непосредственно для движения судна вперед, равно произведению сопротивления
воды R движению судна на его скорость V (Nп=RV кгсм/с).

Мощность, затрачиваемую на вращение гребного винта, можно выразить в виде зависимости Nз от крутящего
момента М и частоты вращения n

Nз=2π*n*M кгсм/с.

Следовательно, КПД можно вычислить следующим образом:

В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w:

va=V(1-w) м/с.

Значения w нетрудно определить по данным, приведенным выше.

Таким образом, полезная мощность с учетом взаимовлияния корпуса и винта равна

а общий пропульсивный КПД комплекса судно-двигатель-гребной винт вычисляется по формуле:

Здесь ηp — КПД винта; ηk — коэффициент влияния корпуса;
ηM — КПД валопровода и реверс-редукторной передачи.

Максимальная величина КПД гребного винта может достигать 70-80%, однако на практике довольно трудно выбрать
оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых
судах КПД реальных винтов может оказаться много ниже, составлять всего 45%.

Максимальной эффективности гребной винт достигает при относительном скольжении 10-30%. При увеличении скольжения КПД быстро падает; при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.

Коэффициент влияния корпуса нередко оказывается больше единицы (1. 1-1. 15), а потери в валопроводе оцениваются
величиной ηM=0. 9÷0.

Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать,
лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными
диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму
лопастей. Для предварительного определения диаметра винта можно воспользоваться формулой

где N — мощность, подводимая к винту, с учетом потерь в редукторе и валопроводе, л. ;
n — частота вращения гребного вала, об/с; va — скорость встречи винта с водой,
определенная с учетом коэффициента попутного потока w.

Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов,
обычно увеличивают примерно на 5% с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности
с двигателем при последующих испытаниях судна. Для «облегчения» винта его постепенно подрезают по диаметру
до получения номинальных оборотов двигателя при расчетной скорости.

Шаг винта можно ориентировочно определить, зная величину относительного скольжения s для данного типа судна
и ожидаемую скорость лодки:

Оптимальная величина скольжения для винтов, имеющих шаговое отношение H/D<1. 2 составляет s=0. 14÷0. 16;
для винтов имеющих H/D>1. 2, s=0. 12÷0. При выборе шагового отношения H/D можно руководствоваться следующими
рекомендациями. Для легких быстроходных лодок требуются винты с большим шагом или шаговым отношением H/D, для тяжелых
и тихоходных — с меньшим. При обычно применяемых двигателях с номинальной частотой вращения 1500-5000 об/мин оптимальное
шаговое отношение H/D составляет: для гоночных мотолодок и глиссеров — 0. 9÷1. 5; легких прогулочных
катеров — 0. 8÷1. 2; водоизмещающих катеров — 0. 6÷3-1. 0 и очень тяжелых тихоходных
катеров — 0,55÷0. Следует иметь в виду, что эта значения справедливы, если гребной вал делает
примерно 1000 об/мин из расчета на каждые 15 км/ч скорости лодки; при иной частоте вращения вала необходимо
применять редуктор.

Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых
зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода
судна.

Каждый двигатель имеет свою так называемую внешнюю характеристику — зависимость снимаемой с вала мощности
от частоты вращения коленчатого вала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного
мотора «Вихрь», например, показана на рисунке 4 (кривая 1). Максимум мощности в 21. 5 л. двигатель развивает
при 5000 об/мин.

Рисунок 4. Внешняя и винтовая характеристики мотора «Вихрь».

Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора,
показана на рисунке 4 не одной, а тремя кривыми — винтовыми характеристиками 2, З и 4, каждая из
которых соответствует определенному гребному винту, т. винту определенного шага и диаметра.

При увеличении и шага, и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком
большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном
валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке A. Это означает,
что двигатель уже достиг предельного — максимального значения крутящего момента и не в состоянии проворачивать гребной
винт с большой частотой вращения, т. не развивает номинальную частоту вращения и соответствующую ей номинальную
мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. мощности вместо 22 л. Такой гребной винт называется гидродинамически тяжелым.

Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому
двнгатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не
полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть,
что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт
называется гидродинамически легким.

Для каждого конкретного сочетания судна и двигателя существует оптимальный гребной винт. Для рассматриваемого примера такой оптимальный винт имеет характеристику 3, которая пересекается с внешней
характеристикой двигателя в точке В, соответствующей его максимальной мощности.

Рисунок 5 иллюстрирует важность правильного подбора винта на примере мотолодки «Крым» с подвесным мотором «Вихрь». При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 чел. на борту развивает скорость 37 км/ч. С полной нагрузкой 4 чел. скорость лодки снижается до 22 км/ч. При замене винта другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Оптимальные же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1. 0 (шаг и диаметр
равны 240 мм): максимальная скорость повышается до 40-42 км/ч, скорость с полной нагрузкой — до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага. Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути,
то при установке винта с шагом 240 мм расход горючего составит 237 г/км.

Рисунок 5. Зависимость скорости мотолодки «Крым» от нагрузки и шага гребного винта
мотора «Вихрь» мощностью 14. 8 кВт (20 л

На следующем рисунке представлен теоретический чертеж для изготовления «грузовых» гребных винтов для моторов
семейства «Вихрь» с шагом 240 и 264 мм. Эти винты имеют саблевидные лопасти со значительным наклоном к оси винта. Профиль поперечного сечения лопасти — переменный. У концов лопастей использован сегментный профиль,
к ступице он постепенно переходит в авиационный, Для повышения КПД шаг винтов принят переменным по
радиусу (данные для построения шаговых угольников приведены на рисунке 6 и в таблице 1.

pic06-2608393

Рисунок 6. Построение шаговых угольников (а) и кривые изменения кромчатого шага лопасти (б).

У подвесных моторов изменение шага гребного винта — практически единственная возможность согласовать работу
винта с двигателем, так как размеры корпуса редуктора ограничивают максимальный диаметр винта, который может
быть установлен на моторе. В некоторой степени винт можно «облегчить», если его подрезать по диаметру, однако
оптимальным вариантом является применение сменных винтов с различным шаговым отношением.

Численные рекомендации для наиболее популярных моторов мощностью 14-18 кВт (20-25 л. ) могут быть следующие. Штатные винты, имеющие H=280÷300 мм, дают оптимальные результаты на сравнительно плоскодонных лодках с массой
корпуса до 150 кг и нагрузкой 1-2 чел. На еще более легкой лодке массой до 100 кг можно получить прирост скорости
за счет увеличения H на 8-12%.

На более тяжелых глиссирующих корпусах, на лодках, имеющих большую килеватость днища и при большой
нагрузке (4-5 чел. ), шаг винта может быть уменьшен на 10-15 % (до 240-220 мм), но использовать такой винт при поездке
без пассажиров с малой нагрузкой не рекомендуется: двигатель будет «перекручивать обороты» и быстро выйдет из строя.

При установке подвесного мотора на тихоходной водоизмещающей шлюпке рекомендуется применять трех- и четырех
лопастные винты с соотношением H/D не менее 0. 7; при этом ширину лопасти и профиль ее поперечного сечения
сохраняют такими же, как и на штатном винте мотора.

При замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение
должно быть не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.

Кавитация и особенности геометрии гребных винтов малых судов. Высокие скорости движения
мотолодок и катеров и частота вращения винтов становятся причиной кавитации — вскипания воды и образований
в области разрежения на засасывающей стороне лопасти. В начальной стадии кавитации эти пузырьки невелики и на работе
винта практически не сказываются. Однако когда эти пузырьки лопаются, создаются огромные местные давления,
отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения
могут быть настолько значительными, что эффективность винта снизится.

При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость — каверна, захватывает всю
лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового
сопротивления и искажения формы лопастей.

Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти,
несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, иа корпус
передается вибрация, лодка движется скачками.

Степень разрежения на лопасти, а следовательно, и момент наступления кавитации зависят прежде всего от скорости
потока, набегающего на лопасть. Напомним, что эта скорость является геометрической суммой окружной
скорости vr=π*D*n к поступательной va. Замечено, что на катерных гребных винтах кавитация
вступает во вторую стадию, когда окружная скорость на конце лопасти достигает значения 3500 м/мин. Это означает, например, что гребной винт диаметром 300 мм будет иметь при этом частоту вращения

а винт диаметром 0. 4 м — около 2800 об/мин.

Момент наступления кавитации зависит не только от частоты вращения, но и от ряда других параметров. Так, чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт,
тем при меньшей частоте вращения, т. раньше наступает кавитация. Появлению кавитации способствует также большой угол
наклона гребного вала, дефекты лопастей — изгиб, некачественная поверхность.

В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении
принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе,
проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А,
а ее отношение к площади Ad сплошного диска такого же, как винт, диаметра, т. A/Ad. На винтах заводского
изготовления величина дискового отношения выбита на ступице.

Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0. 3-0. У сильно нагруженных винтов на быстроходных катерах с мощными высокосборотнымн двигателями A/Ad увеличивается
до 0. 6-1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью,
например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире,
чем увеличить их толщину.

Гребные винты катеров имеют обычно большую частоту вращения, поэтому вследствие больших центробежных скоростей
происходит перетекание воды по лопастям в радиальном направлении, что отрицательно сказывается на КПД винта. Для уменьшения этого эффекта лопастям придают значительный наклон в корму — от 10 до 15°.

В большинстве случаев лопастям винтов придается небольшая саблевидность — линия середин сечений лопасти выполняется
криволинейной с выпуклостью, направленной по ходу вращения винта. Такие винты благодаря более плавному входу лопастей
в воду отличаются меньшей вибрацией лопастей, в меньшей степени подвержены кавитации и имеют повышенную прочность
входящих кромок.

Наибольшее распространение среди винтов малых судов получил сегментный плоско-выпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять
возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен
выпукло-вогнутый профиль («луночка»). Стрелка вогнутости профиля принимается равной около 2% хорды сечения,
а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта,
равном 0. 6R) принимается обычно в пределах t/b=0. 04÷0. Ординаты профилей лопастей некавитирующих винтов
приведены в таблице 2.

ПРИМЕЧАНИЕ: x/b — относительный абсциссы отвходящей кромки ГВ, % хорды сечения лопасти;
Yн — относительная ордината нагнетающей поверхности лопасти, % макс. стрелки вогнутости ƒ;
Yз — относительная ордината засасывающей поверхности лопасти, % макс. расчётной толщины профиля t

Для суперкавитнрующих винтов гоночных судов применяют клиновидный профиль с тупой выходящей кромкой.

Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении
весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых
судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо
нагруженным, и на парусно-моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет
значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения
его сопротивления при плавании под парусами.

Четырех- и пятилопастные винты применяют очень редко, в основном на крупных моторных яхтах для уменьшения шума и
вибрации корпуса.

Гребной винт лучше всего работает, когда его ось расположена горизонтально. У винта, установленного с наклоном и в
связи с этим обтекаемого «косым» потоком, коэффициент полезного действия всегда будет ниже; это падение КПД сказывается
при угле наклона гребного вала к горизонту больше 10°.

Гребной винт-мультипитч

Задачу согласования элементов гребного винта с сопротивлением мотолодки при изменении ее нагрузки помогает решить
винт изменяемого шага типа «мультипитч».

На рисунке представлена схема устройства такого винта, выпускаемого Черноморским судостроительным заводом. Ступица винта изготовлена из нержавеющей стали и коррозионно-стойкого алюминиевого сплава;
лопасти изготавливают литьем под давлением из полиамидных смол. Все три лопасти взаимозаменяемы и имеют на комле жестко
закрепленные пальцы 2, которые проходят в отверстия в торце носовой части ступицы 6 и входят в пазы поводка 4. При повороте лопасти вокруг ее оси происходит синхронный разворот всех лопастей в сторону увеличения или уменьшения
шага винта. На поводке нанесена шкала, причем среднее деление ее соответствует конструктивному шагу, равному 240 мм. Пределы изменения шага составляют 200-320 мм, дисковое отношение винта — 0.

pic08-1725469

Закрепление лопастей в выбранном положении осуществляется гайкой 3. Втулка 5 имеет внутренний диаметр,
равный диаметру гребного вала мотора «Вихрь». От осевого перемещения по втулке винт фиксируется гайкой 3 и
стопорным винтом 8.

Винт имеет диаметр 240 мм и массу не более 0. 71 кг (винт новой конструкции — целиком из полиамидных
смол — весит 0. 45 кг). Для изменения шага достаточно 3-5 мин, причем снимать винт с мотора не требуется,
так же как и специально подходить к берегу. Конструкция защищена авторским свидетельством №454146.

Совмещая в себе как бы несколько сменных гребных винтов разного шага, мультипитч не лишен недостатков. Например, КПД винта при всех значениях шага, кроме конструктивного, оказывается меньше КПД винтов фиксированного шага,
рассчитанных специально на эти промежуточные режимы. Это объясняется тем, что для изменения геометрического шага
винта (уменьшения или увеличения его) в мультипитче, как и в винте регулируемого шага, вся лопасть поворачивается на
какой-то угол. Так как этот угол постоянен для всей лопасти, значение геометрического шага на различных радиусах лопасти
изменяется не на одинаковую величину и распределение шага по радиусу лопасти искажается. Например, при повороте лопасти
в сторону уменьшения шага на постоянный угол шаг сечений у конца лопасти уменьшается в значительно большей степени,
чем у комля. При достаточно большом повороте лопасти концевые сечения даже могут получить отрицательный угол
атаки — создавать упор заднего хода при неизменном направлении вращения гребного вала. Кроме того, при развороте лопасти
профиль поперечного сечения ее уже не ложится на спрямленную винтовую линию, а приобретает S-образную форму, что также
приводит к искажению кромочного шага.

Тем не менее, возможность плавного изменения шага в зависимости от нагрузки лодки позволяет получить наиболее
оптимальный и экономичный режим работы подвесного мотора. При установке шага важно иметь возможность проконтролировать
частоту вращения коленчатого вала двигателя во избежание его перегрузки при чрезмерном уменьшении шага.

Кольцевая профилированная насадка

Кроме снижения частоты вращения гребного винта, заметный эффект в таких случаях дает применение кольцевой
направляющей насадки (рисунок 7), представляющей собой замкнутое кольцо с плоско-выпуклым профилем. Площадь входного
отверстия насадки больше, чем выходного; винт устанавливается в наиболее узком сечении и с минимальным зазором между
краем лопасти и внутренней поверхностью насадки; обычно зазор не превышает 0. 01 D винта. При работе винта засасываемый
им поток вследствие уменьшения проходного сечения насадки увеличивает скорость, которая в диске винта получает
максимальное значение. Благодаря этому уменьшается скольжение винта, повышается его поступь. Вследствие малого зазора
между краем лопасти и насадкой уменьшается перетекание воды через край, что также повышает КПД винта.

Рисунок 7. Кольцевая профилированная насадка: а — расположение гребного винта;
б — размеры и профиль насадки.

Небольшой дополнительный упор создается и на самой насадке, которая обтекается потоком воды подобно крылу. На каждом элементе насадки возникает подъемная сила, которая дает горизонтальную составляющую, направленную вперед. Сумма этих составляющих и образует дополнительный упор.

Очевидно, что применение комплекса винт-насадка сопровождается повышением пропульсивных качеств судна до тех пор,
пока потери мощности на преодоление сопротивления насадки не превысят увеличение упора винта, достигнутое с ее помощью. Для оценки эффективности насадки можно воспользоваться диаграммой, представленной на рисунке 8. По ней можно установить,
на сколько повысится ηн-КПД комплекса винт-насадка по сравнению с КПД η открытого винта. Кривые построены для оптимального диаметра винта в зависимости от коэффициента K’n,
вычисляемого по заданным значениям скорости, частоты вращения винта и мощности, подводимой к винту:

где va — скорость воды в диске винта с учетом попутного потока, м/с; n — частота вращения винта, об/с;
p — массовая плотность воды (102 кгс2/м4); Ne — мощность, подводимая к винту,
с учетом потерь в редукторе и валопроводе, л.

Рисунок 8. Увеличение КПД и изменение элементов гребного винта при установке насадки в зависимости
от величины коэффициента K’n

Подсчитав значение К’n, можно по графику, представленному на рисунке 8, найти относительную
поступь λ. и шаговое отношение винта H/D, а затем определить диаметр винта

и шаг для винта без насадки и с насадкой. Если речь идет об уже эксплуатируемом катере, то с помощью этого графика
можно сравнить существующий винт с элементами винта, имеющего оптимальный диаметр.

Благодаря применению насадки удается повысить скорость катера на 5-8% (и даже до 25% на тихоходной лодке с
двигателем, имеющим большую частоту вращения). При скоростях около 20 км/ч установка насадки нецелесообразна. На быстроходных лодках с увеличением скорости винт становится менее нагруженным, а сопротивление насадки возрастает.

Насадка является хорошей защитой гребного винта от повреждений, благодаря постоянному заполнению водой не
позволяет ему обнажаться при килевой качке. Иногда направляющие насадки выполняют поворачивающимися относительно
вертикальной оси, в результате отпадает необходимость устанавливать руль.

Применение насадок целесообразно и на подвесных моторах, устанавливаемых на тихоходных судах водоизмещающего типа. На 25-30-сильном подвесном моторе целесообразно использовать насадку на судне водоизмещением более 700 кг (например,
на катерах, переделанных из военно-морских ялов, и парусно-моторных яхтах). На моторах мощностью 8-12 л. насадка
полезна уже при водоизмещении более 400 кг.

Рекомендуемые размеры насадки и ее профили показаны на рисунке 7. Длина насадки принимается обычно в
пределах Lн (0. 50÷0. 70) D диаметра винта. Минимальный диаметр насадки (место, где устанавливается
гребной винт) располагается на расстоянии А=(0. 35÷0. 40) D от входящей кромки насадки. Наибольшая толщина
профиля δ=(0. 10÷0. 15) Lн.

Насадку можно выточить из предварительно согнутой в обечайку толстой алюминиевой полосы или выклеить ее из
стеклопластика на болване. Все поверхности насадки следует тщательно отполировать для снижения потерь на трение. На подвесном моторе насадку прикрепляют к антикавитационной плите, для чего снаружи насадки делают «лыску»,
образующую плоскость. Внизу кольцо крепят к шпоре мотора.

Справочник по катерам, лодкам и моторам. под редакцией Г. Новака

Лопастной винт

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2022 года; проверки требует 1 правка.

Лопастнóй винт — устройство, совершающее вращательное движение с закреплёнными перпендикулярно оси вращения лопастями, предназначенное для преобразования движения вращения винта в поступательное движение газов и жидкостей, и наоборот.

olympus-digital-camera-12

Применение — привод воздушных и морских судов (воздушный винт, гребной винт); перемещение газов, жидкостей, сыпучих и кусковых материалов и обратное преобразование поступательного движения газа или жидкости для получения вращательного движения (ветряные мельницы, турбины гидроэлектростанций, ветроэлектростанций).

220px-vestaspag-1019863

220px-lembit_lennusadam_2012_05-5405956

Гребной винт подводной лодки

  • Диаметр винта — диаметр окружности, описываемой концами лопастей при вращении винта
  • Поступь воздушного винта — действительное расстояние, на которое движущийся поступательно винт продвигается в среде за 1 свой полный оборот (зависит от оборотов винта и скорости движения)
  • Геометрический шаг винта — расстояние, которое движущийся поступательно винт должен пройти за 1 свой полный оборот, если бы он двигался в воздухе как в твёрдой среде. Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде
  • Угол установки лопасти винта — угол наклона сечения лопасти к плоскости вращения винта. Так как многие винты имеют крутку лопастей, угол установки замеряют по условному сечению (обычно на 2/3 длины лопасти)
  • Ребро лопасти, рассекающее воздух, называют «передней кромкой», а заднее — «задней кромкой». Плоскость, перпендикулярную оси вращения винта, называют «плоскостью вращения винта»
  • Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной. Для большей прочности применяют лопасти с переменной толщиной, постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной.

Винты подразделяют на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг) и переменным шагом (сечения имеют разный шаг). У винтов с постоянным шагом величина тяги увеличивается по мере увеличения скорости ротации. Винты с переменным шагом вращаются с постоянной скоростью, а их тяга изменяется регулирующим скорость углом, под которым лопасти винта набегают на воздух или воду.

Словарь

ducted propeller

существительное

Словосочетания (3)

  • non-axisymmetrical ducted propeller — гребной винт в асимметричной направляющей насадке
  • steerable ducted propeller — гребной винт в поворотной насадке
  • vectorable ducted propeller — винт в поворотной насадке

Ваш текст переведен частично. Вы можете переводить не более 999 символов за один раз. Войдите или зарегистрируйтесь бесплатно на PROMT. One и переводите еще больше!

Поделиться переводом

идет загрузка.

Прямая ссылка на перевод:

Но сейчас вы можете переводить только 999 символов за один раз.

screw propeller, propeller screw

Примеры из текстов

Известны гребные винты — пропеллеры. There are known screw propellers.

Я слышал о кораблях, которые выходили из дока с подпиленным с двух сторон валом гребного винта. I’ve known ships leave the docks with their propellers half sawn through all round.

Конан Дойль, Артур / Торговый Дом ГердлстонConan Doyle, Arthur / The Firm Of Girdlestone

The Firm Of GirdlestoneConan Doyle, ArthurТорговый Дом ГердлстонКонан Дойль, Артур

Гребные винты могут использоваться в широком диапазоне скоростей, поскольку плоскость винта перпендикулярна к потоку и отсутствует неравномерность обтекания лопастей. The screw propellers may be used in a wide range of speeds as the plane of the propeller is transversal to the stream and there is no nonuniformity of the streamline of blades.

Добавить в мой словарь

screw propeller; propeller screw

Переводы пользователей

Пока нет переводов этого текста. Будьте первым, кто переведёт его!

гребной винт регулируемого шага

гребной винт с поддувом воздуха у основания лопастей

гребной винт со съемными лопастями

конусный гребной винт

гребной винт в асимметричной направляющей насадке

nonaxisymmetrical ducted propeller

воздушный или гребной винт

реверсивный гребной винт

туннельный гребной винт

поворотная направляющая насадка на гребной винт

некавитирующий гребной винт

суперкавитирующий гребной винт

гребной винт с переменным шагом

вентилируемый гребной винт

гребной винт изменяемого шага

adjustable built-up propeller

Оцените статью
RusPilot.com