Полёт самолёта — сложное и опасное мероприятие, поэтому многие пассажиры авиарейсов испытывают вполне объяснимый страх. Особенно опасны взлёт и посадка самолёта, так как именно в эти моменты воздушное судно испытывает наибольшие перегрузки.
- Точечный старт: может ли реактивный истребитель осуществить взлет с места?
- Как самолеты поворачивают в воздухе?
- Как сажают самолеты
- Почему взлёт и посадка самые опасные
- 1. «Падение» и «пауза» в работе двигателей вскоре после взлета
- 2. Крен при наборе высоты
- 3. Уход на второй круг
- 4. Жесткая посадка
- 5. Странные звуки
- 6. Выключение света
- За счет чего взлетает самолет: что ему помогает?
- За счет чего взлетает самолет: принцип перемещения самолета в воздухе
- За счет чего взлетает, поднимается в воздух самолет: способы взлета
- Как взлетает самолет: безопасное движение
- Проверочная работа
- Трудный взлет
- На тележке
- Другие распространённые вопросы про взлёт и посадку
- Почему выключают свет
- Зачем держать шторки иллюминатора открытыми
- Зачем опускать подлокотники и убирать откидные столики
- Для чего отключать мобильные телефоны
- Зачем раздают конфеты
- Безопасная жесткость
- По фактической погоде
- Неприятности у самой земли
- Старт. И точка
- Шасси, закрылки и экономика
Точечный старт: может ли реактивный истребитель осуществить взлет с места?
—>
В советское время автопутешественников удивляло неожиданное улучшение убитых автодорог и увеличение их ширины. Такие роскошные дороги вдруг появлялись, например, в безлюдной степи и так же непонятно исчезали через несколько километров.

Служба в авиации дала ответ на эту загадку: участки автодорог, создаваемые по военным технологиям, служили взлетно-посадочными полосами на случай будущей вoйны, в которой мало кто сомневался. Всем было понятно, что главной целью первого удара станут аэродромы. А как взлетать и садиться без них? Усиленные автодороги и были одним из ответов на этот вопрос. При каждой авиадивизии были специальные инженерные и аэродромные мобильные службы, готовые в кратчайшие сроки развернуть мобильные аэродромы в самых неожиданных местах. Существовали и более фантастические решения, например разгонные реактивные тележки. Их собирался использовать для старта своих гигантских сверхзвуковых реактивных бомбардировщиков один из самых смелых отечественных авиаконструкторов – Владимир Мясищев.

Как самолеты поворачивают в воздухе?

Как, вообще, пилоты разворачивают воздушное судно? Разбираемся в нюансах — рассказываем просто о сложном
Каждый бывалый авиапутешественник сталкивался с ситуацией, когда самолет наматывал круги над аэропортом в ожидании разрешения на посадку, а в новостных лентах регулярно проскакивают сообщения о том, что очередной пилот развернул борт из-за какого-нибудь дебошира на борту. А, кстати, как, вообще, пилоты разворачивают воздушное судно? Разбираемся в нюансах — рассказываем просто о сложном.
Когда самолет летит прямо и с постоянной скоростью, на него действуют сила тяжести и подъемная сила крыла. Вперед его толкает тяга двигателей, уравновешенная силой лобового сопротивления. При этом сила тяги составляет примерно 1/5 часть от веса самолета. Чтобы судно развернулось в воздухе, требуется сила, которая будет действовать перпендикулярно направлению его скорости. Тут на помощь приходят элероны — подвижные части крыла, расположенные на его задней кромке: их видно в иллюминаторы. Непосредственно перед началом разгона и взлета их обязательно проверяют, поворачивая вверх и вниз.
Во время поворота один элерон поднимается верх, другой опускается. Там, где он опущен вниз, подъемная сила крыла увеличивается, а где поднят вверх — уменьшается, поэтому самолет как бы немного закручивается вдоль фюзеляжа, наклоняясь на некоторый угол. И у силы, двигающей воздушное судно вперед, появляется горизонтальная компонента. Она равна массе самолета, умноженной на тангенс угла поворота. Ее достаточно, чтобы преодолеть сопротивление других сил и развернуть самолет по виражу с безопасным креном.
Скоро на «Тонкостях»: 5 стран, где цены как в Турции, а сервис лучше и красот больше
Конфиденциальность данных гарантируется, от подписки можно отказаться в любой момент
Как сажают самолеты
—>
Те, кто живет в районе аэропортов, знают: чаще всего взлетающие лайнеры взмывают вверх по крутой траектории, будто бы стараясь как можно скорее уйти от земли. И действительно – чем ближе земля, тем меньше возможности среагировать на чрезвычайную ситуацию и принять решение. Посадка – другое дело.

Современный реактивный пассажирский лайнер предназначен для полетов на высотах примерно 9−12 тысяч метров. Именно там, в сильно разреженном воздухе, он может двигаться в наиболее экономичном режиме и демонстрировать свои оптимальные скоростные и аэродинамические характеристики. Промежуток от завершения набора высоты до начала снижения называется полетом на крейсерском эшелоне. Первым этапом подготовки к посадке будет снижение с эшелона, или, иными словами, следование по маршруту прибытия. Конечный пункт этого маршрута — так называемая контрольная точка начального этапа захода на посадку. По-английски она называется Initial Approach Fix (IAF).
А 380 совершает посадку на полосу, покрытую водой. Испытания показали, что самолет способен садиться при боковом ветре с порывами до 74 км/ч (20 м/с). Хотя согласно требованиям FAA и EASA устройства реверсивного торможения не являются обязательными, конструкторы компании Airbus решили оснастить ими два двигателя, находящиеся ближе к фюзеляжу. Это дало возможность получить дополнительную тормозную систему, снизив при этом эксплуатационные расходы и уменьшив время подготовки к следующему полету.
С точки IAF начинается движение по схеме подхода к аэродрому и захода на посадку, которая разрабатывается отдельно для каждого аэропорта. Заход по схеме предполагает дальнейшее снижение, прохождение траектории, заданной рядом контрольных точек с определенными координатами, часто выполнение разворотов и, наконец, выход на посадочную прямую. В определенной точке посадочной прямой лайнер входит в глиссаду. Глиссада (от фр. glissade — скольжение) представляет собой воображаемую линию, соединяющую точку входа с началом взлетно-посадочной полосы. Проходя по глиссаде, самолет достигает точки MAPt (Missed Approach Point), или точки ухода на второй круг. Эта точка проходится на высоте принятия решений (ВПР), то есть высоте, на которой должен быть начат маневр ухода на второй круг, если до ее достижения командиром воздушного судна (КВС) не был установлен необходимый визуальный контакт с ориентирами для продолжения захода на посадку. До ВПР КВС уже должен оценить положение самолета относительно ВПП и дать команду «Садимся» или «Уходим».
Почему взлёт и посадка самые опасные
Почему взлёт является опасным:
При взлёте двигатели работают в особом режиме, чтобы разогнать самолёт до нужной скорости и оторваться от земли. Именно в это время существует наибольшая вероятность отказа одного из двигателей. Причём есть некая точка невозврата, после которой уже нельзя тормозить, даже если самолёт ещё не взлетел. При отказе одного двигателя всё равно придётся взлетать, а затем пытаться совершить экстренную посадку.
Другую опасность представляет децентровка самолёта, которая необходима для взлёта. Проще говоря, его нос задирается вверх, чтобы задать нужную траекторию для взлёта. Самолёт в это время испытывает серьёзные перегрузки, так как двигатели толкают его вперёд, а сила тяжести тянет его нос вниз. Конфигурацию задаёт лётчик вручную, поэтому любая его оплошность грозит аварией. А ведь на это влияют различные факторы, например, направление ветра, дождь мокрое покрытие полосы, температура воздуха и другое. Каждый взлёт требует уникальных расчётов.
Боковой ветер серьёзно мешает разбегу и взлёту самолёта. Он кренит летательный аппарат набок и не даёт выровняться. А ведь ветер может быть порывистым, а значит, непредсказуемым. Всё находится только в руках пилота, который держит штурвал. Одна ошибка — и все могут погибнуть.Полеты на современных реактивных самолетах в настоящее время имеют высокую степень безопасности
При посадке опасностей куда больше:
Изменение направления или силы ветра также опасны. Аэродинамические свойства самолётов напрямую связаны с воздухом, а ветер состоит как раз из него. Реальная скорость самолёта складывается из скорости ветра и скорости самолёта. Если ветер резко прекратиться, то самолёт может резко нырнуть вниз или накрениться в сторону. В момент посадки это представляет серьёзную угрозу жизни людей на борту. Только реакция пилота может спасти, да и то не всегда.
Видимость — ещё одна опасность. При взлёте она не так важна, потому что ориентиры для этого не нужны. Однако для посадки нужно чётко видеть полосу, чтобы задать верный угол и траекторию. У пилотов есть специальная тренировка, во время которой они сажают воздушное судно в условиях ограниченной видимости, например, в тумане. Они должны регулярно подтверждать этот навык на практике.
Ориентирование по приборам уже касается только пилотов, которые просто обязаны уметь за доли секунды анализировать показания всех стрелок на панели без внешних ориентиров. Именно этот навык требуется, когда видимость нулевая или ограниченная.
Коэффициент сцепления шасси самолёта и покрытия полосы имеет непостоянное значение. На данный показатель влияют температура, влажность и состояние полосы. Пилот должен сам сделать вывод и задать правильный угол для посадки. Если он ошибётся, то может произойти занос самолёта и авария.
Изменение массы самолёта также оказывает влияние на посадку. Во время полёта сгорает топливо, и снижается масса судна. Пилот должен верно оценить изменения, чтобы отцентровать самолёт при посадке.
Недолёты и перелёты могут привести к аварии. Пилот должен с ювелирной точностью посадить судно на знаки.
Известный советский пилот гражданской авиации и автор нескольких книг о работе лётчиков Василий Ершов однажды сказал, что самой сложной фигурой самолёта является как раз посадка. В воздухе ещё можно что-то исправить, при посадке — нет.

Пилоты дружно недоумевают: чего бояться, если все стандартно и повторяется из раза в раз?
Опросы показывают то, что очевидно без любых опросов: взлет и посадка для многих пассажиров — самые пугающие моменты полета, конкуренцию которым в этом смысле могут составить разве что пресловутые зоны турбулентности. Пилоты дружно недоумевают: чего бояться, если все стандартно и повторяется из раза в раз? Но это для них стандартно, а пассажиров — очень даже беспокоят следующие шесть вещей.
1. «Падение» и «пауза» в работе двигателей вскоре после взлета
Момент, когда недавно оторвавшаяся от земли железная птица резко задирает нос, пожалуй, самый стремный. Мало того что внизу что-то принимается греметь и жужжать (а это лишь начинают убираться шасси), так еще возникает ощущение, словно двигатели на мгновение выключаются и самолет валится в яму. Но это абсолютно нормально — так ощущается резкое уменьшение скорости набора высоты: до набора примерно 300 метров двигатели работают на самой высокой мощности и громко шумят. А потом мощность снижается и кажется, что двигатели выключились.
2. Крен при наборе высоты
Если при взлете надо одновременно развернуться (а так бывает примерно в половине случаев), самолет начинает ощутимо клониться набок, вызывая у самых нервных пассажиров нехорошие мысли и желание срочно опустить шторки на всех иллюминаторах в поле зрения. Однако падение из-за слишком сильного наклона самолету не грозит от слова совсем. Пилоты шутят, что на современных лайнерах можно даже «бочку» делать, то есть поворот воздушного судна вокруг продольной оси на все 360 °. А наклон в 30 ° — абсолютная норма.
3. Уход на второй круг
Часть пассажиров уверена: если самолет вдруг отправился перед посадкой на второй круг — значит, дело плохо: у лайнера серьезная неисправность, аэропорт обесточен или шут его знает, что еще творится. В реальности самолеты чаще всего отправляются на второй круг из-за плохих метеоусловий — например, сильного бокового ветра или тумана: пилоты просто перестраховываются и рассчитывают на то, что при втором заходе ветер будет потише, а туман успеет сдуть. Другая нередкая причина — загруженность аэропорта: нужно дать другому самолету время время покинуть взлетно-посадочную полосу.
4. Жесткая посадка
Если самолет жестковато сел, это не значит, что у него отказали двигатели, кончилось топливо или пилот внезапно забыл, куда нажимать и чего дергать. Иногда жесткая посадка — вынужденная мера. Дождь или наледь, короткая ВПП, полоса с уклонами, резкое изменение ветра в момент посадки — вот самые вероятные причины.
5. Странные звуки
Многие боятся звуков, которые издает железная птица при взлете и посадке: нарастающий гул, стуки, внезапная тишина. Если вас обуревает страх именно в такие моменты, вспомните про обычные холодильники. В некоторых инструкциях к ним даже объясняют, что именно происходит с агрегатом, когда он тарахтит или «вздыхает». Самолет же несколько сложнее морозилки: он буквально напичкан всевозможными моторами, тягами и сервоприводами, вот и «звучит» на все лады.
6. Выключение света
Кого-то особенно пугает, когда во время набора высоты или, наоборот, при снижении в салоне самолета гасят свет. Между тем, это часть штатного протокола взлета/посадки и делается это для того, чтобы стюарды в случае чего лучше видели, что происходит за бортом. А еще для того, чтобы глазам пассажиров не надо было привыкать к темноте, если вдруг придется эвакуироваться.
А вы боитесь перечисленных ситуаций?
Самолет — это невероятная сила и красота, особенно в полете. Но как такую огромную машину можно поднять?
Современного человека сложно удивить летающим самолетом в небе. Но если вы хоть раз находились вблизи этой многотонной техники, то озадачивались вопросом – за счет чего взлетает самолет и как воздух его удерживает?
Из школьных учебников по физике всем известно, что главными инструментами полета выступают сила тяги двигателя и подъемная сила.
За счет чего взлетает самолет: что ему помогает?
- Ключевой поверхностной конструкций самолета являются крылья с верхней выпуклой частью и плоской нижней. Благодаря их особенной форме движение самолета на большой скорости превращает воздушный поток в несущую силу. Нижняя часть профиля самолета оставляет воздушный поток неизменным. При контакте с верхней частью поток воздуха сужается.
- Конструкция крыльев имеет самое важное значение для самолета. От их способности выдерживать большую нагрузку зависит безопасный перелет человека.
- Согласно закону Бернулли из физики – большая скорость воздушного потока приводит к низкому давлению и наоборот. Если применить данное правило к самолету, то получаем что под крылом давление воздуха значительно выше, чем над его поверхностью. За счет чего и взлетает самолет.
- Начало движения самолета начинается за счет авиационного двигателя. С помощью силы тяги развивается определенная скорость. В результате образуется подъемная сила, которая влияет на крыло, а следом и на весь самолет.

- Как только сила начинает превосходить вес самолета, он начинает взлетать в воздух. При равнозначном значении данных параметров летательный аппарат выравнивается в горизонтальное положение.
- Подняться самолету в воздух помогает закон физики. Чтобы крылья запарили в воздухе, необходимо создать разницу давлений. Для взлета пассажирского лайнера необходимо развить скорость свыше 180 км/час.
- Для полноценного разбега большегрузного самолета требуется длинная взлетно-посадочная полоса. Авиалайнер должен набрать максимальную взлетную скорость. Как только достигается нужная быстрота, происходит отрыв от земли и поднимается в воздух самолет.
Чем легче летающее средство, тем меньшая скорость нужна для взлета, к примеру, для взлета пассажирского самолета Ту 154М необходимо развить скорость 210 км/ч, для тяжелого самолета Boeing 737 – 220 км/ч. От скорости взлета зависит безопасность и надежность полета.
- Для отрыва самолета от земли важны такие показатели как форма и профиль крыла, угол атаки, плотность и скорость воздушного потока. Важное значение имеет высота полета, которая для разных самолетов составляет от 5 до 12 тысяч метров. На большой высоте сопротивление воздуха значительно снижается и самолет расходует меньше топлива, чем на высоте до 1000 м.
- Соотношение между металлическим крылом и воздушным потоком называют углом атаки. Для отрыва самолета от земли необходим показатель 3-5°. Конструкция крыла представляет собой непропорциональный металлический профиль с выпуклой верхней частью и ровным листом снизу. Прямая нижняя поверхность обеспечивает полноценное движение воздушной массы.

Если угол атаки превысит критическую отметку, самолет начнет падать.
За счет чего взлетает самолет: принцип перемещения самолета в воздухе
Вопрос как взлетает самолет зависит от возможностей и характеристик 4 основных частей:
- Плоскость крыла
- Предкрылки и закрылки
- Спойлеры
- Винтовой и реактивный двигатель
Крылья самолета помогают зафиксировать аппарат в горизонтальном положении. Для управления на высоте предусмотрены подвижные кромки.
- При взлете самолета пилоты специальными рычагами устанавливают положение для максимальной тяги. С помощью подвижных кромок подъемная сила крыла возрастает. При посадке самолета пассажиры могут увидеть, как на задней части крыла опускаются закрылки. Происходит плавная потеря высоты.
- Выпуклая форма крыла создает верхним потокам воздуха более длинный путь, чем под крылом. Так как за крылом количество воздуха должно быть одинаковым, удлинение верхнего маршрута приводит к ускорению движения. Как следствие – понижение давления воздуха над крылом. Неравномерное давление сверху и снизу крыла помогает удержать огромную конструкцию в воздухе.
- Крылья авиалайнера самостоятельно не формируют подъемную силу. Движение самолета вперед осуществляется с помощью реактивных двигателей. Их работа обеспечивает выброс большого количества воздуха. Реактивная сила обеспечивает самолету движение вперед, и в процессе набора скорости возникает подъемная сила.
- Пилот самолета управляет полетом с помощью штурвала. С помощью нажатия педалей и выравнивания штурвала в определенное положение происходит набор высоты или снижение.
- Чтобы развернуть самолет, в хвостовой части предусмотрен вертикальный киль и горизонтальные стабилизаторы. Маленькие хвостовые крылья помогают удержать фиксированное положение.

- При поднятии самолета вверх пилоты немного опускают хвост. При таком положении возрастает угол атаки крыла.
- Штурвал тянется на себя, и самолет набирает высоту. Нажатие на левую педаль очень плавно наклоняет самолет влево, на правую – вправо.
- Для дополнительного торможения на крыльях самолета предусмотрены спойлеры. Их управление осуществляется пилотами вручную.
За счет чего взлетает, поднимается в воздух самолет: способы взлета
Обеспечить конкретную скорость для взлета самолета можно несколькими способами:
- Взлет летательного аппарата с тормозов – самый распространенный способ. Двигатели самолета раскочегаривают до требуемой скорости при удержании самолета на тормозах.
- Как только достигается нужный показатель, летательный аппарат спускается с тормозов и приступает к ускоренному разбегу.

- Взлет самолета с промежуточным торможением на взлетной полосе – скорость набирается при разбеге по длинной полосе.
- Взлет в период выруливания на полосу – на аэродроме с ограниченным количеством свободного пространства отрыв самолета производится сходу, что позволяет ускорить взлет и задействовать минимум взлетной полосы.
- Взлет при помощи трамплинов и систем для торможения колес – применяется для взлета боевых самолетов с поверхности авианосцев. Для создания мощной тяги самолеты оснащаются ракетными двигателями.
- Взлет по вертикали – применяется для боевой техники на ограниченном взлетном пространстве.

Каждый самолет взлетает по четко прописанному инструктажу, в котором указаны скорость отрыва, допустимая масса при взлете, уровень шума и другие показатели.
Как взлетает самолет: безопасное движение
- После того, как взлетает самолет, в процессе полета он преодолевает зону турбулентности, пролетает через облака, встречается с непредвиденными погодными условиями. В этот момент человека охватывает беспокойство.
- Просматриваемое колебание консолей является нормальной нагрузкой для конструкции авиалайнера.
- Удар молнии не способен вывести самолет из равновесия. Возможное отклонение – кратковременное отключение приборов. А вот в грозовых облаках сконцентрированы потоки воздуха большой мощности, способные нарушить равновесие.
- Автоматизированное управление самолетом находится под постоянным контролем с земли. Благодаря этому самолеты соблюдают определенные маршруты и не пересекаются.

- Во время полета от пилота требуется максимальное внимание. Он обязан контролировать работу двигателей, следить за высотой и выбранным курсом, за собственным направлением и движением других самолетов.
- Слаженная работа техники и хорошо обученный пилот — позволяют обеспечить пассажирам безопасный полет.
<!—
—>
Проверочная работа
Увидеть в действии эти уникальные системы нам не удалось. После успешных запусков королевской баллистической ракеты Р-7 с дальностью полета 12 000 км, которая к тому же была неуязвима для систем ПВО той эпохи, все работы по сверхзвуковым стратегическим бомбардировщикам свернули. Но в технической осуществимости подобного проекта сомневаться не приходится. В 1980 году идею на практике проверили американцы.
Плюсы: взлет с места стоянки, любое рассредоточение мест старта, возможность хорошей маскировки, малый объем строительных работ при небольшом расходе бетона, возможность одновременного вылета большого числа самолетов, уменьшение веса взлетно-посадочных устройств. Минусы: необходимость газовых органов управления и стабилизации.
Для освобождения заложников в захваченном американском посольстве в Тегеране был придуман фантастический план с посадкой на футбольном поле в центре города 70-тонного транспортного самолета C-130. Поле, надо сказать, к тому же было огорожено 9-метровой бетонной стеной. Так что садиться и взлетать C-130 должен был практически вертикально. Для этого транспортный самолет, получивший обозначение YMC-130H, был буквально напичкан мощными ракетными двигателями: восемь двигателей от противолодочных ракет RUR-5 АSROС в носовой части для торможения, восемь от противорадиолокационных ракет AGM-45 Shrike в нижней части для подъема, восемь в хвостовой части от ракет средней дальности морского базирования RIM-66 Standard MR для ускорения взлета, еще две от АSROС для предотвращения удара хвоста о землю при резком взлете и еще четыре таких же двигателя на пилонах крыла для устранения поперечного рыскания! Были проведены испытательные полеты, которые сильно напоминали китайский фестиваль фейерверков, но самолет взлетал и садился почти с места.
Правда, в ставшем последним испытательном полете произошло рассогласование включения носовых тормозных и вертикальных подъемных двигателей, самолет остановился слишком высоко над полосой, потерял устойчивость и рухнул. Однако несколько взлетов-посадок прошли успешно. Впрочем, в дальнейшем работы по YMC-130H, как и по точечно взлетающим М-50, были свернуты. Тем не менее они остаются великолепным памятником дерзким, почти сумасшедшим идеям авиаконструкторов XX века.
Трудный взлет
В начале 1950-х годов КБ Мясищева приступило к проектированию уникального стратегического сверхзвукового бомбардировщика М-50. Конструкторам пришлось решить массу задач, ранее не встречавшихся в авиастроении, – до Ту-144 или Ту-160 было еще очень далеко. Про любую из них можно написать целую статью, но мы сосредоточимся только на проблеме взлета. Дело в том, что большой дальности на сверхзвуковых скоростях для бомбардировщика весом 265 т в те времена добивались за счет увеличения длины разбега. И даже при установлении взлетной дистанции 3 км для М-50 планировалось обязательное применение ракетных ускорителей. Расчеты показывали, что для взлета без ускорителей с полной бомбовой нагрузкой стратегическому бомбардировщику требовалась взлетная полоса 6 км! Для сравнения: ВПП для космического «Бурана» на Байконуре имеет длину 3,5 км. Но и трехкилометровых бетонных взлетных полос в СССР почти не было. Поэтому в КБ Мясищева одновременно с проектированием самолета приступили к разработке экзотических стартовых устройств: стартовой тележки с шинными колесами, тележки на рельсовом пути, гидротележки, «летающего шасси» и системы точечного старта.
На тележке
Наибольший интерес ВВС вызвала система старта с гидротележки – гигантской 160-тонной отделяемой поплавковой глиссирующей системы с собственными разгонными двигателями, успешные модельные испытания которой были проведены в ЦАГИ. Никаких теоретических проблем с созданием полноразмерного образца не было найдено, и, кроме того, военных привлекала возможность расширить районы базирования сверхзвуковой стратегической авиации. Большим плюсом водного базирования было и то, что оно давало возможность подвозить топливо и боекомплект средствами флота, а только керосина для одного самолета нужны были сотни тонн. Однако у Мясищева не оказалось специалистов с опытом проектирования глиссирующих корпусов (в отличие, например, от КБ Туполева, разрабатывавшего и выпускавшего в годы войны глиссирующие торпедные катера). Идею с гидротележкой пришлось отложить в сторону.
Плюсы: непоражаемость водного аэродрома, возможность широкого маневрирования и перебазирования тележки с изделием, возможность материально-технического обеспечения (топливо, боекомплект) средствами флота. Минусы: отсутствие опыта проектирования, строительства и эксплуатации стартовых устройств такого типа, необходимость проведения комплекса экспериментальных исследований.
Вторая идея базировалась на создании 35-тонной тележки, оснащенной двигателями с ускорителями. Плюсов у этой схемы было только два: возможность взлета с облегченных взлетно-посадочных полос с толщиной плит до 20 см и возможность маневрирования с установленным самолетом вплоть до мест рассредоточения. Недостатков было гораздо больше. Например, скорость отрыва М-50 должна была составлять около 450 км/ч. Сравните с максимальной скоростью болидов F1 – 372,6 км/ч. Трудно представить 35-тонный тягач с установленным 265-тонным самолетом, разогнанный до таких скоростей. Не меньшей проблемой была и дальнейшая остановка разогнанного сверхтяжелого тягача: тормозной путь значительно увеличивал длину ВПП вместо ее сокращения. К тому же возникали опасения по поводу способности пилота тягача удержать прямой курс на таких скоростях да еще с таким грузом сверху.
Некоторое решение этих проблем представлял третий вариант – 25-тонная разгонная тележка на рельсовом пути. Во-первых, сама собой решалась проблема курсовой устойчивости при взлете. Во-вторых, по идее, строительство нескольких километров рельсовых путей должно было обойтись гораздо дешевле полноценной взлетно-посадочной полосы. Сложность была в том, что не только в СССР, но и в мире не было технологий строительства столь скоростной железной дороги с такой точностью укладки полотна и с таким высоким удельным давлением на грунт. Последним оставался вариант так называемого точечного старта.
Плюсы: простота пилотирования на взлете благодаря направленности взлета, надежный останов тележки после отделения самолета (зажимные тормоза), относительная дешевизна постройки пути и меньшая уязвимость с воздуха. Минусы: трудность создания усиленного железнодорожного пути с повышенной точностью укладки, ограниченные районы обслуживания.
Другие распространённые вопросы про взлёт и посадку
Во время полёта пассажирам необходимо выполнять ряд требований, призванных обеспечить безопасность и комфортный полёт.
Почему выключают свет
В целях безопасности глаза людей должны приспособиться к натуральному свету в самолёте
Свет в салоне питается от генератора, который обеспечивает питание двигателю. В момент взлёта и посадки требуется больше электроэнергии, чем во время полёта, поэтому каждый сэкономленный киловатт важен. Более того, повышенные нагрузки при взлёте и посадке увеличивают шансы на возникновение замыкания или возгорания. Поэтому лучше несколько секунд побыть в темноте и перестраховаться.
Зачем держать шторки иллюминатора открытыми
При очень жёсткой посадке пластмассовая шторка может расколоться и повредить лицо осколками
Это правило придумано в целях безопасности. Изнутри самолёта можно оценить обстановку за бортом, а снаружи видно, что происходит внутри. Если произойдёт авария, то спасателям будет проще ориентироваться, заглядывая в иллюминаторы.
Зачем опускать подлокотники и убирать откидные столики
В случае экстренного торможения можно получить серьёзную травму, ударившись головой о разобранный стол, вплоть до летального исхода
С опущенными подлокотниками и убранными столиками проще и быстрее эвакуироваться. Вдруг понадобится экстренная эвакуация пассажиров — это сэкономит драгоценное время и, возможно, спасёт кому-то жизнь. К тому же в случае экстренного торможения есть риск удариться о столик или подлокотник.
Для чего отключать мобильные телефоны
Телефоны и прочие устройства могут выпасть из рук при резких движениях самолета и нанести травмы людям либо причинить повреждения салону самолета
Правило отключать мобильные телефоны или переводить их в авиарежим обязательно почти у всех авиаперевозчиков. На самом деле мобильные телефоны не оказывают никакого влияния на работу приборов и не несут прямой опасности. Скорее всего, компании перестраховываются на случай непредвиденных обстоятельств. Вдруг появилась новая технология, которая способна навредить приборам самолёта? Или человек начнёт звонить на борту и не услышит какую-то важную информацию?
Зачем раздают конфеты
Известной панацеей от закладывания ушей во время полёта является зевок или глотательное движение
Во время взлёта происходит резкий перепад давления, от которого может заложить уши и ухудшиться самочувствие. Жевательные и глотательные движения позволяют легче перенести это. Вместо конфет можно использовать обычную жвачку.
Правила на борту самолёта созданы для обеспечения безопасности пассажиров. Необходимо их строго соблюдать, чтобы избежать возможных последствий. Если пассажир нарушает правила или отказывается их выполнять, то бортпроводник имеет полное право высадить человека без возмещения стоимости билета. А злостные нарушители могут получить дополнительный штраф или понести уголовную ответственность.
Безопасная жесткость
Любой авиапассажир с опытом полетов отечественными и иностранными авиакомпаниями наверняка успел заметить, что наши пилоты сажают самолеты «мягко», а иностранные — «жестко». Иными словами, во втором случае момент касания полосы ощущается в виде заметного толчка, тогда как в первом — самолет мягко «притирается» к полосе. Различие в стиле посадки объясняется не только традициями летных школ, но и объективными факторами.
Для начала внесем терминологическую ясность. Жесткой посадкой в авиационном обиходе называется посадка с перегрузкой, сильно превышающей нормативную. В результате такой посадки самолет в худшем случае получает повреждение в виде остаточной деформации, а в лучшем — требует специального технического обслуживания, нацеленного на дополнительный контроль состояния самолета. Как объяснил нам ведущий пилот-инструктор департамента летных стандартов авиакомпании «S7 Airlines» Игорь Кулик, сегодня пилот, допустивший настоящую жесткую посадку, отстраняется от полетов и направляется на дополнительную подготовку на тренажерах. Прежде чем снова выйти в рейс, провинившемуся также предстоит зачетно-тренировочный полет с инструктором.
Стиль посадки на современных западных самолетах нельзя называть жестким — речь просто идет о повышенной перегрузке (порядка 1,4−1,5 g) по сравнению с 1,2−1,3 g, характерных для «отечественной» традиции. Если говорить о методике пилотирования, то разница между посадками с относительно меньшей и относительно большей перегрузкой объясняется различием в процедуре выравнивания самолета.
К выравниванию, то есть к подготовке к касанию с землей, пилот приступает сразу после пролета торца полосы. В это время летчик берет штурвал на себя, увеличивая тангаж и переводя воздушное судно в кабрирующее положение. Попросту говоря, самолет «задирает нос», чем достигается увеличение угла атаки, а значит, небольшой рост подъемной силы и падение вертикальной скорости.
Двигатели при этом переводятся в режим «малый газ». Через некоторое время задние стойки шасси касаются полосы. Затем, уменьшая тангаж, пилот опускает на полосу переднюю стойку. В момент касания задействуются интерцепторы (спойлеры, они же воздушные тормоза). Затем, уменьшая тангаж, пилот опускает на полосу переднюю стойку и включает реверсивное устройство, то есть дополнительно тормозит двигателями. Торможение колесами применяется, как правило, во второй половине пробега. Реверс конструктивно представляет из себя щитки, которые ставятся на пути реактивной струи, отклоняя часть газов под углом 45 градусов к курсу движения самолета — почти в обратную сторону. Следует отметить, что на воздушных судах старых отечественных типов использование реверса при пробеге обязательно.
Отечественные летчики, особенно эксплуатирующие лайнеры советских типов (Ту-154, Ил-86), часто завершают выравнивание процедурой выдерживания, то есть какое-то время продолжают полет над полосой на высоте около метра, добиваясь мягкого касания. Конечно, посадки с выдерживанием нравятся пассажирам больше, да и многие пилоты, особенно с большим опытом работы в отечественной авиации, считают именно такой стиль признаком высокого мастерства.
Однако сегодняшние мировые тенденции авиаконструирования и пилотирования отдают предпочтение посадке с перегрузкой 1,4−1,5 g. Во-первых, такие посадки безопаснее, так как приземление с выдерживанием содержит в себе угрозу выкатывания за пределы полосы. В этом случае практически неизбежно применение реверса, что создает дополнительный шум и увеличивает расход топлива. Во-вторых, сама конструкция современных пассажирских самолетов предусматривает касание с повышенной перегрузкой, так как от определенного значения физического воздействия на стойки шасси (обжатие) зависит срабатывание автоматики, например задействование спойлеров и колесных тормозов. В воздушных судах старых типов этого не требуется, так как спойлеры включаются там автоматически после включения реверса. А реверс включается экипажем.
Есть еще одна причина различия стиля посадки, скажем, на близких по классу Ту-154 и А 320. Взлетные полосы в СССР зачастую отличались невысокой грузонапряженностью, а потому в советской авиации старались избегать слишком сильного давления на покрытие. На тележках задних стоек Ту-154 по шесть колес — такая конструкция способствовала распределению веса машины на большую площадь при посадке. А вот у А 320 на стойках всего по два колеса, и он изначально рассчитан на посадку с большей перегрузкой на более прочные полосы.
Островок Сен-Мартен в Карибском бассейне, поделенный между Францией и Нидерландами, получил известность не столько из-за своих отелей и пляжей, сколько благодаря посадкам гражданских лайнеров. В этот тропический рай со всех уголков мира летят тяжелые широкофюзеляжные самолеты типа Боинг-747 или А-340. Такие машины нуждаются в длинном пробеге после посадки, однако в аэропорту Принцессы Юлианы полоса слишком коротка – всего 2130 метров – торец ее отделен от моря лишь узкой полоской земли с пляжем. Чтобы избежать выкатывания, пилоты аэробусов целятся в самый торец полосы, пролетая в 10-20 метрах над головами отдыхающих на пляже. Именно так проложена траектория глиссады. Фотографии и видеоролики с посадками на о. Сен-Мартен давно обошли интернет, причем многие поначалу не поверили в подлинность этих съемок.
По фактической погоде
В информационных сводках нередко можно услышать подобную фразу: «В связи с ухудшением метеоусловий в районе аэропорта N экипажи принимают решения о взлете и посадке по фактической погоде». Этот распространенный штамп вызывает у отечественных авиаторов одновременно смех и возмущение. Разумеется, никакого произвола в летном деле нет. Когда самолет проходит точку принятия решения, командир воздушного судна (и только он) окончательно объявляет, станет ли экипаж сажать лайнер или посадка будет прервана уходом на второй круг. Даже при наилучших погодных условиях и отсутствии препятствий на полосе КВС имеет право отменить посадку, если он, как гласят Федеральные авиационные правила, «не уверен в благополучном исходе посадки». «Уход на второй круг сегодня не считается просчетом в работе пилота, а наоборот, приветствуется во всех допускающих сомнения ситуациях. Лучше проявить бдительность и даже пожертвовать каким-то количеством сожженного топлива, чем подвергнуть даже малейшему риску жизнь пассажиров и экипажа», — объяснил нам Игорь Бочаров, начальник штаба летной эксплуатации авиакомпании «S7 Airlines».
Курсо-глиссадная система состоит из двух частей: пары курсовых и пары глиссадных радиомаяков. Два курсовых радиомаяка находятся за ВПП и излучают вдоль нее направленный радиосигнал на разных частотах под небольшими углами. На осевой линии ВПП интенсивность обоих сигналов одинакова. Левее и правее этой прямой сигнал одного из маяков сильнее другого. Сравнивая интенсивность сигналов, радионавигационная система самолета определяет, с какой стороны и как далеко он находится от осевой линии. Два глиссадных маяка стоят в районе зоны приземления действуют аналогичным образом, только в вертикальной плоскости.
С другой стороны, в принятии решений КВС жестко ограничен существующим регламентом процедуры посадки, и в пределах этого регламента (кроме экстренных ситуаций вроде пожара на борту) у экипажа нет никакой свободы принятия решений. Существует жесткая классификация типов захода на посадку. Для каждого из них прописаны отдельные параметры, определяющие возможность или невозможность такой посадки в данных условиях.
Например, для аэропорта «Внуково» инструментальный заход на посадку по неточному типу (по приводным радиостанциям) требует прохождения точки принятия решений на высоте 115 м при горизонтальной видимости 1700 м (определяется метеослужбой). Для совершения посадки до ВПР (в данном случае 115 м) должен быть установлен визуальный контакт с ориентирами. Для автоматической посадки по II категории ИКАО эти значения значительно меньше — они составляют 30 м и 350 м. Категория IIIс допускает полностью автоматическую посадку при нулевой горизонтальной и вертикальной видимости — например, в полном тумане.
Неприятности у самой земли
И все-таки по-настоящему жесткие посадки, а также прочие неприятности на финальном отрезке полета случаются. Как правило, к авиапроисшествиям приводит не один, а несколько факторов, среди которых и ошибки пилотирования, и отказ техники, и, конечно же, стихия.
Большую опасность представляет так называемый сдвиг ветра, то есть резкое изменение силы ветра с высотой, особенно когда это происходит в пределах 100 м над землей. Предположим, самолет приближается к полосе с приборной скоростью 250 км/ч при нулевом ветре. Но, спустившись чуть ниже, самолет вдруг наталкивается на попутный ветер, имеющий скорость 50 км/ч. Давление набегающего воздуха упадет, и скорость самолета составит 200 км/ч. Подъемная сила также резко снизится, зато вырастет вертикальная скорость. Чтобы компенсировать потерю подъемной силы, экипажу потребуется добавить режим двигателя и увеличить скорость. Однако самолет обладает огромной инертной массой, и мгновенно набрать достаточную скорость он просто не успеет. Если нет запаса по высоте, жесткой посадки избежать не удастся. Если же лайнер натолкнется на резкий порыв встречного ветра, подъемная сила, наоборот, увеличится, и тогда появится опасность позднего приземления и выкатывания за пределы полосы. К выкатываниям также приводит посадка на мокрую и обледеневшую полосу.
Другой бич авиации — боковой ветер. Когда при подходе к торцу полосы самолет летит с углом сноса, у пилота часто появляется желание «подвернуть» штурвалом, поставить самолет на точный курс. При довороте возникает крен, и самолет подставляет ветру большую площадь. Лайнер сдувает еще дальше в сторону, и в этом случае единственно правильным решением становится уход на второй круг.
При боковом ветре экипаж часто стремится не потерять контроль за направлением, но в итоге теряет контроль за высотой. Это стало одной из причин катастрофы Ту-134 в Самаре 17 марта 2007 года. Сочетание «человеческого фактора» с плохой погодой стоило жизни шести людям.
Иногда к жесткой посадке с катастрофическими последствиями приводит неправильное вертикальное маневрирование на заключительном отрезке полета. Порой самолет не успевает снизиться на требуемую высоту и оказывается выше глиссады. Пилот начинает «отдавать штурвал», пытаясь выйти на траекторию глиссады. При этом резко возрастает вертикальная скорость. Однако при возросшей вертикальной скорости требуется и большая высота, на которой надо начинать выравнивание перед касанием, причем эта зависимость квадратичная. Летчик же приступает к выравниванию на психологически привычной ему высоте. В результате воздушное судно касается земли с огромной перегрузкой и разбивается. Таких случаев история гражданской авиации знает немало.
Авиалайнеры последних поколений можно вполне назвать летающими роботами. Сегодня через 20−30 секунд после взлета экипаж в принципе может включить автопилот и дальше машина все сделает сама. Если не случится чрезвычайных обстоятельств, если в базу данных бортовых компьютеров будет введен точный план полета, включающий траекторию захода на посадку, если аэропорт прибытия обладает соответствующим современным оборудованием, лайнер сможет выполнить полет и совершить посадку без участия человека. К сожалению, в реальности даже самая совершенная техника иногда подводит, в эксплуатации все еще находятся воздушные суда устаревших конструкций, а оборудование российских аэропортов продолжает желать лучшего. Именно поэтому, поднимаясь в небо, а затем спускаясь на землю, мы еще во многом зависим от мастерства тех, кто работает в пилотской кабине.
Благодарим за помощь представителей авиакомпании «S7 Airlines» — пилота-инструктора Ил-86, начальника штаба летной эксплуатации Игоря Бочарова, главного штурмана Вячеслава Феденко, пилота-инструктора директората департамента летных стандартов Игоря Кулика
Старт. И точка
Идее старта с места почти столько же лет, сколько и авиации – первые прототипы еще нелетающих самолетов в конце XIX века стартовали при помощи катапульт. Уже в 1916 году 30-метровые катапульты для гидросамолетов были установлены на трех американских крейсерах. Вторую жизнь в идею безаэродромного старта вдохнули крылатые ракеты, или, как их называли в 1950-е годы, самолеты-снаряды. Собственно, первые крылатые ракеты самолетами и являлись, только беспилотными. И первоначально они запускались не из вертикальных контейнеров, как сейчас, а с пологих направляющих. Успех запусков первых крылатых ракет и натолкнул авиаконструкторов на мысль запускать таким же образом реактивные самолеты-перехватчики. В СССР такую систему разрабатывало КБ Микояна на базе усиленного истребителя-перехватчика МиГ-19С с твердотопливным ракетным ускорителем. Испытания в 1957 году прошли успешно, было выполнено восемь стартов, но проект закрыли: как раз в это время подоспели зенитно-ракетные комплексы, которые гораздо эффективнее решали эти задачи.
Плюсы: мобильность переброски тележки для обслуживания различных аэродромов. Минусы: дорогостоящее сооружение при неясном процессе взлета, необходимость бетонных покрытий, трудность обеспечения безопасного расцепа, ограничение применимости по скоростям (до 450 км/ч).
Но одно дело запустить в воздух 8-тонный МиГ-19С, другое – 200-тонный бомбардировщик. Поэтому была выбрана другая схема точечного старта – без рельсовой направляющей. По сути, самолет поднимался в воздух как ракета, на жидкостных ракетных двигателях. Стартовая позиция же состояла из маятниковой конструкции, отводящей самолет от земли в самом начале движения, подъемников для установки М-50 на маятник, ямы и отражательных устройств для факелов ракетных двигателей. Две основные опоры маятника воспринимали 98% нагрузки, остальная приходилась на хвостовую опору.
Точно так же устанавливались и ракетные ускорители: два основных под крыльями и один в хвостовой части фюзеляжа. Два подкрыльевых ускорителя с восемью соплами тягой 136 т каждый, ставившиеся под углом 55 градусов, создавали вертикальную силу, превосходящую взлетную массу самолета, а горизонтальная составляющая тяги помогала турбореактивным двигателям разгонять самолет. Хвостовой ускоритель убирал вертикальное рыскание, а поперечное регулировалось газовыми элеронами, установленными в струях основных двигателей. Взлет должен был выполняться следующим образом. Первыми запускались основные турбореактивные двигатели, и самолет стабилизировался автопилотом. Взлетные ускорения были настолько велики, что весь процесс взлета был полностью автоматизирован, пилот в состоянии, близком к обмороку, вряд ли мог чем-то помочь. После чего запускались хвостовой ракетный двигатель и основные подкрыльевые ракетные ускорители, снимались стопоры и самолет поднимался на маятнике на высоту 20 м, где и происходило рассоединение. После достижения расчетной скорости 450 км/ч самолет переходил в штатный режим взлета, а отработанные ускорители сбрасывались на парашютах.
Шасси, закрылки и экономика
Современные лайнеры по сравнению с воздушными судами прошлых поколений буквально набиты электроникой. В них реализована система электродистанционного управления fly-by-wire (буквально «лети по проводу). Это означает, что рули и механизацию приводят в движение исполнительные устройства, получающие команды в виде цифровых сигналов. Даже если самолет летит не в автоматическом режиме, движения штурвала не передаются рулям непосредственно, а записываются в виде цифрового кода и отправляются в компьютер, который мгновенно переработает данные и отдаст команду исполнительному устройству. Для того, чтобы повысить надежность автоматических систем в самолете установлено два идентичных компьютерных устройства (FMC, Flight Management Computer), которые постоянно обмениваются информацией, проверяя друг друга. В FMC вводится полетное задание с указанием координат точек, через которые будет пролегать траектория полета. По этой траектории электроника может вести самолет без участия человека. Зато рули и механизация (закрылки, предкрылки, интерцепторы) современных лайнеров мало чем отличаются от этих же устройств в моделях, выпущенных десятилетия назад. 1. Закрылки. 2. Интерцепторы (спойлеры). 3. Предкрылки. 4. Элероны. 5. Руль направления. 6. Стабилизаторы. 7. Руль высоты.
К подоплеке этого авиапроисшествия имеет отношение экономика. Подход к аэродрому и заход на посадку связаны с постепенным уменьшением скорости воздушного судна. Поскольку величина подъемной силы крыла находится в прямой зависимости и от скорости, и от площади крыла, для поддержания подъемной силы, достаточной для удержания машины от сваливания в штопор, требуется площадь крыла увеличить. С этой целью используются элементы механизации — закрылки и предкрылки. Закрылки и предкрылки выполняют ту же роль, что и перья, которые веером распускают птицы, перед тем как опуститься на землю. При достижении скорости начала выпуска механизации КВС дает команду на выпуск закрылков и практически одновременно — на увеличение режима работы двигателей для предотвращения критической потери скорости из-за роста лобового сопротивления. Чем на больший угол отклонены закрылки/предкрылки, тем больший режим необходим двигателям. Поэтому чем ближе к полосе происходит окончательный выпуск механизации (закрылки/предкрылки и шасси), тем меньше будет сожжено топлива.
На отечественных воздушных судах старых типов была принята такая последовательность выпуска механизации. Сначала (за 20−25 км до полосы) выпускалось шасси. Затем за 18−20 км — закрылки на 280. И уже на посадочной прямой закрылки выдвигались полностью, в посадочное положение. Однако в наши дни принята иная методика. В целях экономии летчики стремятся пролететь максимальное расстояние «на чистом крыле», а затем, перед глиссадой, погасить скорость промежуточным выпуском закрылков, потом выпустить шасси, довести угол закрылков до посадочного положения и совершить посадку.
На рисунке очень упрощенно показана схема захода на посадку и взлета в районе аэропорта. На самом деле схемы могут заметно отличаться от аэропорта к аэропорту, так как составляются с учетом рельефа местности, наличия вблизи высотных строений и запретных для полета зон. Иногда для одного и того же аэропорта действуют несколько схем в зависимости от метеоусловий. Так, например, в московском «Внуково» при заходе на полосу (ВВП 24) обычно используется т.н. короткая схема, траектория которой пролегает за пределами МКАД. Но в плохую погоду самолеты заходят по длинной схеме, и лайнеры пролетают над Юго-Западом Москвы.
Экипаж злополучного Ил-86 тоже воспользовался новой методикой и выпустил закрылки до шасси. Ничего не знавшая о новых веяниях в пилотировании автоматика Ил-86 тут же включила речевую и световую сигнализацию, которая требовала от экипажа выпустить шасси. Чтобы сигнализация не нервировала пилотов, ее просто отключили, как выключают спросонья надоевший будильник. Теперь напомнить экипажу, что шасси все-таки надо выпустить, было некому. Сегодня, правда, уже появились экземпляры самолетов Ту-154 и Ил-86 с доработанной сигнализацией, которые летают по методике захода на посадку с поздним выпуском механизации.