- Здравствуйте, уважаемые читатели!
- Что такое скорость звука
- То же самое в виде таблицы
- Зачем нужно число Маха
- Число М некоторых сверхзвуковых самолетов:
- А вот гиперзвуковые летательные аппараты:
- Сверхзвуковые самолеты — прошлое, настоящее и будущее
- Что происходит с самолетом?
- С чего все началось?
- Первый сверхзвуковой самолет в СССР
- Развитие гражданской авиации
- Достижения зарубежом
- Сверхзвуковая авиация на данный момент
- Технические характеристики
- Будущее сверхзвуковых полетов
Здравствуйте, уважаемые читатели!
Прежде чем пуститься в разговоры по теме, внесем некоторую ясность в вопрос о точности понятий (то, что мне нравится :-)). Сейчас в достаточно широком употреблении находятся два термина: звуковой барьер и сверхзвуковой барьер. Звучат они похоже, но все же неодинаково. Однако, строгости особой разводить смысла нет: по сути это одно и то же. Определением звуковой барьер пользуются чаще всего люди более сведущие и более близкие к авиации. А вторым определением обычно все остальные.
Я думаю, что с точки зрения физики (и русского языка :-)) более правильно говорить все же звуковой барьер. Здесь простая логика. Ведь существует понятие , а фиксированного понятия скорость сверхзвука, строго говоря, нет. Чуть забегая вперед скажу, что когда летательный аппарат летит на сверхзвуке, то он уже этот барьер прошел, а когда он его проходит (преодолевает), то он при этом проходит некое пороговое значение скорости, равное скорости звука (а не сверхзвука).
Вот как-то так :-). При этом первое понятие употребляется значительно реже, чем второе. Это, видимо, оттого, что слово сверхзвуковой звучит более экзотично и привлекательно. А в сверхзвуковом полете экзотика безусловно присутствует и, естественно, привлекает многих. Однако далеко не все люди, смакующие слова «сверхзвуковой барьер» понимают на самом деле, что же такое. Не раз уже в этом убеждался, заглядывая на форумы, читая статьи даже смотря телевизор.
Вопрос этот на самом деле с точки зрения физики достаточно сложен. Но мы в сложности, конечно, не полезем. Просто постараемся, как обычно, прояснить ситуацию используя принцип «объяснения аэродинамики на пальцах» :-).
Звуковые волны (камертон).
Это чередование областей сжатия и разрежения, распространяющихся в разные стороны от источника звука. Примерно как круги на воде, которые тоже как раз волнами и являются (только не звуковыми :-)). Именно такие области, воздействуя на барабанную перепонку уха, позволяют нам слышать все звуки этого мира, от человеческого шепота до грохота реактивных двигателей.
Пример звуковых волн.
Точками распространения звуковых волн могут быть различные узлы самолета. Например двигатель (его звук известен любому :-)), или детали корпуса ( например, носовая часть), которые, уплотняя перед собой воздух при движении, создают определенного вида (сжатия), бегущие вперед.
Все эти звуковые волны распространяются в воздушной среде с уже известной нам скоростью звука. То есть если самолет дозвуковой, да еще и летит на малой скорости, то они от него как бы убегают. В итоге при приближении такого самолета мы слышим сначала его звук, а потом уже пролетает он сам.
Оговорюсь, правда, что это справедливо, если самолет летит не очень высоко. Ведь скорость звука – это не скорость света :-). Величина ее не столь велика и звуковым волнам нужно время, чтобы дойти до слушателя. Поэтому очередность появления звука для слушателя и самолета, если тот летит на большой высоте может измениться.
А раз звук не так уж и быстр, то с увеличением собственной скорости самолет начинает догонять волны им испускаемые. То есть, если бы он был неподвижен, то волны расходились бы от него в виде , как круги на воде от брошенного камня. А так как самолет движется, то в секторе этих кругов, соответствующем направлению полета, границы волн (их ) начинают сближаться.
Дозвуковое движение тела.
Соответственно, промежуток между самолетом (его носовой частью) и фронтом самой первой (головной) волны ( то есть это та область, где происходит постепенное, в известной степени, торможение при встрече с носовой частью самолета (крыла, хвостового оперения) и, как следствие, увеличение давления и температуры) начинает сокращаться и тем быстрее, чем больше скорость полета.
Наступает такой момент, когда этот промежуток практически исчезает (или становится минимальным), превращаясь в особого рода область , которую называют . Это происходит тогда, когда скорость полета достигает скорости звука, то есть самолет движется с той же скоростью, что и волны им испускаемые. при этом равно единице ().
Звуковое движение тела (М=1).
Скачок уплотнения, представляет собой очень узкую область среды (порядка ), при прохождении через которую происходит уже не постепенное, а резкое (скачкообразное) изменение параметров этой среды — скорости, давления, температуры, плотности. В нашем случае скорость падает, давление, температура и плотность растут. Отсюда такое название — скачок уплотнения.
Несколько упрощенно обо всем этом я бы еще сказал так. Сверхзвуковой поток резко затормозить невозможно, но ему это делать приходится, ведь уже нет возможности постепенного торможения до скорости потока перед самым носом самолета, как на умеренных дозвуковых скоростях. Он как бы натыкается на участок дозвука перед носом самолета (или носком крыла) и сминается в узкий скачок, передавая ему большую энергию движения, которой обладает.
Можно, кстати, сказать и наоборот, что самолет передает часть своей энергии на образование скачков уплотнения, чтобы затормозить сверхзвуковой поток.
Сверхзвуковое движение тела.
Есть для скачка уплотнения и другое название. Перемещаясь вместе с самолетом в пространстве, он представляет собой по сути дела фронт резкого изменения вышеуказанных параметров среды (то есть воздушного потока). А это есть суть .
Скачок уплотнения и ударная волна, вобщем-то, равноправные определения, но в аэродинамике более употребимо первое.
Ударная волна (или скачок уплотнения) могут быть практически перпендикулярными к направлению полета, в этом случае они принимают в пространстве приблизительно форму круга и называются . Это обычно бывает на режимах, близких к .
Режимы движения тела. ! — дозвук, 2 — М=1, сверхзвук, 4 — ударная волна (скачок уплотнения).
При числах они уже располагаются под углом к направлению полета. То есть самолет уже перегоняет собственный звук. В этом случае они называются и в пространстве принимают форму конуса, который, кстати, носит название , по имени ученого, занимавшегося исследованиями сверхзвуковых течений (упоминал о нем в одной из предыдущих статей).
Форма этого конуса (его так сказать «стройность») как раз и зависит от числа М и связана с ним соотношением: М= 1/sin α, где – это угол между осью конуса и его образующей. А коническая поверхность касается фронтов всех звуковых волн, источником которых стал самолет, и которые он «обогнал», выйдя на сверхзвуковую скорость.
Кроме того скачки уплотнения могут быть также , когда они примыкают к поверхности тела, двигающегося со сверхзвуковой скоростью или же , если они с телом не соприкасаются.
Виды скачков уплотнения при сверхзвуковом обтекании тел различной формы.
Обычно скачки становятся присоединенными, если сверхзвуковой поток обтекает какие-либо остроконечные поверхности. Для самолета это, например, может быть заостренная носовая часть, ПВД, острый край воздухозаборника. При этом говорят «», например, на нос.
А отошедший скачок может получиться при обтекании закругленных поверхностей, например, передней закругленной кромки толстого аэродинамического профиля крыла.
Различные узлы корпуса летательного аппарата создают в полете довольно сложную систему скачков уплотнения. Однако, наиболее интенсивные из них – два. Один на носовой части и второй – на элементах хвостового оперения. На некотором расстоянии от летательного аппарата промежуточные скачки либо догоняют головной и сливаются с ним, либо их догоняет хвостовой.
Скачки уплотнения на модели самолета при продувке в аэродинамической трубе (М=2).
В итоге остаются два скачка, которые, вобщем-то, воспринимаются земным наблюдателем как один из-за небольших размеров самолета по сравнению с высотой полета и, соответственно,т небольшим промежутком времени между ними.
Интенсивность ( другими словами э) ударной волны (скачка уплотнения) зависит от различных параметров (скорости движения летательного аппарата, его конструктивных особенностей, условий среды и др.) и определяется перепадом давления на ее фронте.
По мере удаления от вершины конуса Маха, то есть от самолета, как источника возмущений ударная волна ослабевает, постепенно переходит в обычную звуковую волну и в конечном итоге совсем исчезает.
А от того, какой степени интенсивностью будет обладать скачок уплотнения (или ударная волна), достигший земли зависит эффект, который он может там произвести. Ведь не секрет, что всем известный летал на сверхзвуке только над Атлантикой, а военные сверхзвуковые самолеты выходят на сверхзвук на больших высотах или в районах, где отсутствуют населенные пункты (по крайней мере вроде как должны это делать :-)).
Однако в большинстве своем то, что остается от скачков уплотнения при достижении ими земли уже неопасно. Просто сторонний наблюдатель на земле может при этом услышать звук, схожий с грохотом или взрывом. Именно с этим фактом связаны одно расхожее и довольно стойкое заблуждение.
Люди, не слишком искушенные в авиационной науке, услышав такой звук, говорят, что это самолет преодолел звуковой барьер (сверхзвуковой барьер). На самом деле это не так. Это утверждение не имеет ничего общего с действительностью по крайней мере по двум причинам.
Ударная волна (скачок уплотнения).
Во-первых, если человек, находящийся на земле, слышит высоко в небе гулкий грохот, то это означает, всего лишь, (повторяюсь :-)) что его ушей достиг фронт ударной волны (или скачок уплотнения) от летящего где-то самолета. Этот самолет уже летит на сверхзвуковой скорости, а не только что перешел на нее.
И если этот же человек смог бы вдруг оказаться в нескольких километрах впереди по следованию самолета, то он опять бы услышал тот же звук от того же самолета, потому что попал бы под действие той же ударной волны, движущейся вместе с самолетом.
Она перемещается со сверхзвуковой скоростью, и по сему приближается бесшумно. А уже после того, как она окажет свое не всегда приятное воздействие на барабанные перепонки (хорошо, когда только на них :-)) и благополучно пройдет дальше, становится слышен гул работающих двигателей.
Примерная схема полета самолета при различных значениях числа М на примере истребителя Saab 35 «Draken». Язык, к сожалению, немецкий, но схема вобщем понятна.
Более того сам переход на сверхзвук не сопровождается никакими единовременными , , и т.п. На современном сверхзвуковом самолете летчик о таком переходе чаще всего узнает только по показанию приборов. При этом происходит, однако, некий процесс, но он при соблюдении определенных правил пилотирования ему практически не заметен.
Но и это еще не все :-). Скажу больше. Звуковой барьер в виде именно какого-то ощутимого, тяжелого, труднопересекаемого препятствия, в который самолет упирается и который нужно «прокалывать» (слышал я и такие суждения :-))
Строго говоря, вообще никакого барьера нет. Когда-то на заре освоения больших скоростей в авиации это понятие сформировалось скорее как психологическое убеждение о трудности перехода на сверхзвуковую скорость и полете на ней. Появились даже высказывания о том, что это вообще невозможно, тем более, что предпосылки к такого рода убеждениям и высказываниям были вполне конкретные.
В аэродинамике существует другой термин, который достаточно точно описывает процесс взаимодействия с воздушным потоком тела, движущегося в этом потоке и стремящегося перейти на сверхзвук. Это волновой кризис. Именно он как раз и делает некоторые нехорошие вещи, которые традиционно ассоциируют с понятием звуковой барьер.
Итак кое-что о кризисе :-). Любой летательный аппарат состоит из частей, обтекание которых воздушным потоком в полете может быть не одинаково. Возьмем, к примеру, крыло, точнее обыкновенный классический .
Из основ знаний о том, как образуется подъемная сила нам хорошо известно, что скорость потока в прилежащем слое верхней криволинейной поверхности профиля разная. Там где профиль более выпуклый она больше общей скорости потока, далее, когда профиль уплощается она снижается.
Когда крыло движется в потоке на скоростях, близких к скорости звука, может наступить момент, когда в такой вот, к примеру, выпуклой области скорость слоя воздуха, которая уже итак больше общей скорости потока, становится звуковой и даже сверхзвуковой.
Местный скачок уплотнения, возникающий на трансзвуке при волновом кризисе.
Дальше по профилю эта скорость снижается и в какой-то момент опять становится дозвуковой. Но, как мы уже говорили выше, быстро затормозиться сверзвуковое течение не может, поэтому неизбежно возникновение скачка уплотнения.
Такие скачки появляются на разных участках обтекаемых поверхностей, и первоначально они достаточно слабы, но количество их может быть велико, и с ростом общей скорости потока увеличиваются зоны сверхзвука, скачки «крепнут» и сдвигаются к задней кромке профиля. Позже такие же скачки уплотнения появляются на нижней поверхности профиля.
Далее с ростом скорости размер сверхзвуковых зон все увеличиваются и в конечном итоге весь профиль полностью попадает в зону сверхзвукового обтекания. Самолет переходит на сверхзвук.
Полное сверхзвуковое обтекание профиля крыла.
Чем все это чревато? А вот чем. Первое – это значительный рост аэродинамического сопротивления в диапазоне скоростей (около М=1, более или менее). Это сопротивление растет за счет резкого увеличения одной из его составляющих – . Того самого, которое мы ранее при рассмотрении полетов на дозвуковых скоростях во внимание не принимали.
Для образования многочисленных скачков уплотнения (или ударных волн) при торможении сверхзвукового потока, как я уже говорил выше, тратится энергия, и берется она из кинетической энергии движения летательного аппарата. То есть самолет элементарно (и очень ощутимо!). Это и есть
Более того, скачки уплотнения из-за резкого торможения потока в них, способствуют отрыву пограничного слоя после себя и превращения его из в . Это еще более увеличивает аэродинамическое сопротивление.
Отекание профиля при различных числах М. Скачки уплотнения, местные зоны сверхзвука, турбулентные зоны.
Второе. Из-за появления местных сверхзвуковых зон на профиле крыла и дальнейшем их сдвиге к хвостовой части профиля с увеличением скорости потока и, тем самым, изменения картины распределения давления на профиле, точка приложения аэродинамических сил (центр давления) тоже смещается к задней кромке. В результате появляется относительно центра масс самолета, заставляющий его опустить нос.
Резкое возрастание аэродинамического сопротивления на трансзвуке (волновой кризис) за счет роста волнового сопротивления. Сd — коэффициент сопротивления.
Далее. Из-за возникновения пикирующего момента появляются сложности в управлении по тангажу. Кроме того из-за неупорядоченности и неравномерности процессов, связанных с возникновением местных сверхзвуковых зон со скачками уплотнения тоже . Например по крену, из-за разных процессов на левой и правой плоскостях.
Да еще плюс возникновение , часто довольно сильных из-за местной турбулизации.
Вобщем, полный набор удовольствий, который носит название волновой кризис. Но, правда, все они имеют место (имели,конкретное :-)) при использовании типичных дозвуковых самолетов (с толстым профилем прямого крыла) с целью достижения сверхзвуковых скоростей.
Первоначально, когда еще не было достаточно знаний, и не были всесторонне исследованы процессы выхода на сверхзвук, этот самый набор считался чуть ли не фатально непреодолимым и получил название звуковой барьер (или сверхзвуковой барьер, если хотите :-)).
При попытках преодоления скорости звука на обычных поршневых самолетах было немало трагических случаев. Сильная вибрация порой приводила к разрушениям конструкции. Самолетам не хватало мощности для требуемого разгона. В горизонтальном полете он был невозможен из-за эффекта запирания воздушного винта, имеющего ту же природу, что и волновой кризис.
Поэтому для разгона применяли пикирование. Но оно вполне могло стать фатальным. Появляющийся при волновом кризисе пикирующий момент делал , и из него, иной раз, не было выхода. Ведь для восстановления управления и ликвидации волнового кризиса необходимо было погасить скорость. Но сделать это в пикировании крайне трудно (если вообще возможно).
Затягивание в пикирование из горизонтального полета считается одной из главных причин катастрофы в СССР 27 мая 1943 года известного экспериментального истребителя с жидкостным ракетным двигателем. Проводились испытания на максимальную скорость полета, и по оценкам конструкторов достигнутая скорость была больше . После чего произошло затягивание в пике, из которого самолет не вышел.
Экспериментальный истребитель БИ-1.
В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера (если это требуется :-)) особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию.
Как известно, волновой кризис начинается при числах М, близких к единице. Поэтому практически все реактивные дозвуковые лайнеры (пассажирские, в частности) имеют полетное ограничение по числу М. Обычно оно находится в районе . Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация, после чего скорость полета должна быть снижена.
Практически все самолеты, летающие на скоростях как минимум 800 км/ч и выше имеют (по крайней мере по передней кромке :-)). Оно позволяет отодвинуть начало наступления волнового кризиса до скоростей, соответствующих М=.
Стреловидное крыло. Принципиальное действие.
Причину такого эффекта можно объяснить достаточно просто. На прямое крыло воздушный поток со скоростью набегает практически под прямым углом, а на стреловидное (угол стреловидности ) под некоторым углом скольжения . Скорость можно в векторном отношении разложить на два потока: и .
Поток Vτ не влияет на распределение давления на крыле, зато это делает поток Vn, как раз и определяющий несущие свойства крыла. А он заведомо меньше по величине общего потока V. Поэтому на стреловидном крыле наступление волнового кризиса и рост происходит ощутимо позже, чем на прямом крыле при той же скорости набегающего потока.
Экспериментальный истребитель Е-2А (предшественник МИГ-21). Типичное стреловидное крыло.
Одной из модификаций стреловидного крыла стало крыло со (упоминал о нем здесь). Оно тоже позволяет сдвинуть начало волнового кризиса на большие скорости, кроме того позволяет повысить экономичность, что немаловажно для пассажирских лайнеров.
SuperJet 100. Стреловидное крыло со сверхкритическим профилем.
Если же самолет предназначен для перехода звукового барьера (проходя и волновой кризис тоже :-)) и полета на сверхзвуке, то он обычно всегда отличается определенными конструктивными особенностями. В частности, обычно имеет тонкий профиль крыла и оперения с острыми кромками (в том числе ромбовидный или треугольный) и определенную форму крыла в плане (например, или с наплывом и т.д.).
Сверхзвуковой МИГ-21. Послелователь Е-2А. Типичное треугольное в плане крыло.
МИГ-25. Пример типичного самолета, созданного для полета на сверхзвуке. Тонкие профили крыла и оперения, острые кромки. Трапециевидное крыло. профиль
Прохождение пресловутого звукового барьера, то есть переход на сверхзвуковую скорость такие самолеты осуществляют на форсажном режиме работы двигателя в связи с ростом аэродинамического сопротивления, ну и, конечно, для того, чтобы быстрее проскочить зону волнового кризиса. И сам момент этого перехода чаще всего никак не ощущается (повторяюсь :-)) ни летчиком (у него разве что может снизиться уровень звукового давления в кабине), ни сторонним наблюдателем, если бы, конечно, он мог за этим наблюдать :-).
Однако, здесь стоит сказать еще об одном заблуждении, со сторонними наблюдателями связанным. Наверняка многие видели такого рода фотографии, подписи под которыми гласят, что это есть момент преодоления самолетом звукового барьера, так сказать, визуально.
Эффект Прандтля-Глоэрта. Не связан с прохождением звукового барьера.
Во-первых, мы уже знаем, что звукового барьера, как такового-то и нет, и сам переход на сверхзвук ничем таким сверхординарным (в том числе и хлопком или взрывом ) не сопровождается.
Во-вторых. То, что мы видели на фото – это так называемый . Я о нем уже писал здесь. Он никак напрямую не связан с переходом на сверхзвук. Просто на больших скоростях (дозвуковых, кстати :-)) самолет, двигая перед собой определенную массу воздуха создает сзади некоторую . Сразу после пролета эта область начинает заполняться воздухом из близлежащего пространства с естественным увеличением объема и резким падением температуры.
Еслидостаточна и температура падает ниже точки росы окружающего воздуха, то происходит из водяных паров в виде тумана, который мы и видим. Как только условия восстанавливаются до исходных, этот туман сразу исчезает. Весь этот процесс достаточно скоротечен.
Такому процессу на больших околозвуковых скоростях могут способствовать местные скачки уплотнения, иногда помогая формировать вокруг самолета нечто похожее на пологий конус.
Большие скорости благоприятствуют этому явлению, однако, если влажность воздуха окажется достаточной, то оно может возникнуть (и возникает) на довольно . Например, над поверхностью водоемов. Большинство, кстати, красивых фото такого характера сделаны с борта авианосца, то есть в достаточно влажном воздухе.
https://youtube.com/watch?v=HYMvwxMulV0%3Frel%3D0
https://youtube.com/watch?v=fhSsL1rEGuQ%3Frel%3D0
Есть правильный ответ — больше 1 М. Или Число Маха равное единице, это скорость звука, а выше единицы, это уже сверхзвук.
Совсем не привычное нам число, выраженное в километрах в час. Если упростить, то объяснить можно так: скорость звука зависит о свойств среды в которой он распространяется, чем плотнее среда, тем быстрее распространяются колебания (звук это ведь волна). Таким образом на разной высоте скорость звука разная. Чем выше, тем меньше плотность воздуха и тем ниже будет местная скорость звука.
Что такое скорость звука
Скорость звука в километрах в час не выражается, просто потому, что в таком случае она всегда будет разной.
Зависимость скорости звука от высоты полета
Например, скорость звука у земли (на высоте 0 км) составит 340 метров в секунду (м/с), это 1224 км/ч. И тут важно сказать что такое значение будет: при температуре +15 и давлении 750 мм. рт. ст. и относительной влажности 0%. То есть, при «стандартных» условиях.
А вот на высоте 10 000 метров, на которой летают современные пассажирские лайнеры, это уже около 299 м/с (это 1076 км/ч), то есть разница довольно значительная — 12%.
Также от высоты полета и других параметров атмосферы зависит и скорость звука, и сопротивление воздуха и, соответственно, скорость самолета, которую он может развить.
Скорость звука на высоте 11 километров и выше почти не будет меняться, эта часть атмосферы называется «тропопауза».
То же самое в виде таблицы
Зависимость скорости звука от высоты*
*Минутка занудства. Нужно напомнить, что на самом деле скорости звука от высоты зависит условно, это упрощение. Скорость звука зависит от плотности атмосферы, а плотность воздуха, в свою очередь, зависит от температуры, влажности и давления, которые меняются с высотой.
Зачем нужно число Маха
Так вот, число Маха в авиации представляет собой отношение скорости летательного аппарата к скорости звука на той высоте на которой он сейчас летит. Так удобнее, ведь на разной высоте скорость звука будет разной и чтобы понимать достигает ли самолет скорости звука, его скорость измеряют в числах М.
Один мах, это просто — 1 мах, а не «км/ч». Нельзя просто ответить на вопрос «сколько 1 мах в километрах в час», нужно всегда уточнять, о какой высоте идет речь.
Если еще проще, число М показывает сколько скоростей звука в скорости самолета сейчас на конкретной высоте (при определенных условиях среды). Если число Маха больше единицы, очевидно, мы имеем дело со сверхзвуковой скоростью. Поэтому чаще всего вы будете встречать пояснение для какой высоты указано конкретное число Маха.
Например, для Боинга 777 крейсерской скоростью считается 0,84 М (это дозвуковой летательный аппарат). То есть на высоте 10 000 метров при стандартных условиях, принимая скорость звука за 1076 км/ч умножаем ее на 0,84 и получаем — 904 км/ч. По документации крейсерская скорость Boeing 777 составляет как раз 905 км/ч.
Что касается сверхзвуковых летательных аппаратов, то, по определению, их скорости должны быть больше скорости звука, то есть больше 1 М. Например у Су-27 это 2,35 М, что примерно 2 528 км/ч на высоте 10 км (скорость звука 295 м/с, а это 1062 км/ч).
Число М некоторых сверхзвуковых самолетов:
- Су-27 — 2,35 М
- Су-30 — 2,0 М
- Миг-31 — 2,82 М
- Eurofighter — 2,0 М
- F-15 — 2,5 М
- F-16 — 2,0 М
- F-22 — 2,25 М
- SR-71 — 3,3 М (3 529 км/ч)
А вот гиперзвуковые летательные аппараты:
- Эксперементальный гиперзвуковой X-43A — 7,5 М (12 144 км/ч)
- Эксперементальная ракета X-51 — 9,8М (12 144 км/ч)
SR-71 — самый быстрый серийный самолет
Еще одно замечание, число Маха в авиации, это качественная величина, а не количественная. То есть это не скорость в чистом виде, а критерий который показывает насколько скорость объекта выше скорости звука. Зачем? Затем, что дозвуковые, трансзвуковые, сверхзвуковые или гиперзвуковые скорости очень сильно отличаются по сути.
Пилоту (и инженеру тоже) важно знать какой у него сейчас режим обтекания самолета (дозвуковой, трансзвуковой или сверхзвуковой). Например, во многих указателях скорости есть отдельный циферблат, показывающий значение числа Маха в дополнению к приборной скорости.
На картинке в начале этого повествования изображен трансзвуковой режим. Это значит, что сам самолет еще не превысил скорость звука, а на некоторых его участках (на фото это очень хорошо видно по белым «клиньям») скорость обтекания уже достигла скорости звука.
Поэтому и образовались скачки уплотнения которые хорошо видны благодаря образованию конденсата позади них. Вот почему, число Маха так важно.
Сверхзвуковые самолеты — прошлое, настоящее и будущее
Первым выдающимся достижением в развитии сверхбыстрых скоростей считается тестовый полет летчика-испытателя компании «Messerschmitt» Л. Гофмана, сумевшего разогнать реактивный сверхзвуковой самолет ME-262 до 981 км/час на высоте более 7 км. Однако после этого рекорда показатели максимальной скорости еще долго оставались на прежнем уровне. Гиперзвуковой полет отличается от обычного иной аэродинамической картиной, позволяющей летательному аппарату передвигаться в условиях разреженного воздуха.
Что происходит с самолетом?
При достижении сверхзвуковой скорости самолеты сталкиваются с волновым сопротивлением, ударными волнами, скачками уплотнения и необходимостью преодолеть гиперзвуковой барьер. Кроме того, возникает флаттер — дрожание, которое может вызвать деформацию отдельных частей самолета и привести к его крушению.

Инженеры, занимающиеся авиацией, учитывали явления и эффекты, свойственные высоким скоростям, для осуществления значительных изменений в лайнерах. Для этого гиперзвуковые самолеты были оснащены треугольными или стреловидными крыльями, оборудованными специальными наплывами для создания спирального искусственного вихря. Стабилизаторы были изменены, получив цельно-поворотную конструкцию и другие элементы.
С чего все началось?
Первый сверхзвуковой самолет в мире был запущен в серийное производство в 1958 году американской корпорацией «McDonellDouglas». Процесс создания прототипа реактивного судна занял несколько лет, и был инициирован по заказу ВВС США. Проектирование планера Douglas C-8 было нацелено на создание универсального самолета, соответствующего актуальным коммерческим стандартам безопасности и надежности. Особое внимание инженеры уделяли конструктивным особенностям крыльев, обладающих стреловидной формой и заметным сужением.
А Вы знали, что сверхзвуковой самолет должен обладать крылом особой формы?
Самолет МИГ-19 стал первым сверхзвуковым самолетом, выпущенным в серийное производство в СССР. Он использовался для противовоздушной обороны страны. Истребитель был создан на базе опытного СМ-1 в 1952 году. В ходе испытаний в 1954 году МИГ-19 достиг скорости более 1649 км/ч. После применения ракетного ускорителя максимальная скорость увеличилась до 1929 км/ч.
Первый сверхзвуковой самолет в СССР
Первый гиперзвуковой советский пассажирский лайнер был выпущен в конструкторском бюро Туполева в 60-х годах и назывался ТУ-144. Перед создателями модели стояла задача разработать самолет, предназначенный для перевозки пассажиров и способный развивать скорость выше звуковой. Первый ТУ-144 сошел с конвейера почти на 3 месяца раньше выхода британско-французского сверхзвукового лайнера «Concorde». Преодолеть звуковой барьер ему удалось на испытаниях летом 1969 года на высоте 11 км. Число маха во время следующего тестирования в 1970 году составило 2, что эквивалентно скорости 2151 км/час.

Развитие гражданской авиации
На развитие гражданской авиации серьезное влияние оказали технические достижения, полученные в результате военных разработок 60-х годов. Инженеры разных стран сумели искоренить главные проблемы, мешавшие преодолеть звуковой барьер, и спроектировали первые сверхзвуковые самолеты для нужд гражданского населения. Первый пассажирский авиалайнер, предназначенный для транспортировки пассажиров — упомянутый выше Douglas C-8, развивший скорость свыше 1261 км/час на испытаниях, проходивших на высоте 15800 метров.
Первый вылет «Конкорда» состоялся весной 1969 года. В отличие от пассажирского лайнера ТУ-144, до двухтысячного года данная модель ни единого раза не фигурировала в сводках прессы, посвященных авиакатастрофам. Летом 2000 года произошла первая авария с участием «Конкорда», который рухнул на крышу отеля сразу после вылета из главного аэровокзала Франции «Шарль Де Голль». ТУ-144 принадлежат не только лавры пионера в задаче покорения скорости звука, но и печальная слава, закрепившаяся за лайнером после катастрофы на знаменитой выставке «LeBourje», а также возгорания в 1978 году на одном из аэродромов Московской области.

Проверка установила, что возгорание произошло по причине ряда недоработок топливной системы обновленных двигателей. Пилоты ТУ-144 смогли посадить загоревшееся судно, однако дальнейшие рейсы коммерческого плана на нем были окончательно завершены. «Concorde» служил задачам пассажирской авиации намного дольше, но после катастрофы, произошедшей в двухтысячном году, пассажиропоток стал настолько мизерным, что спустя 3 года этот гиперзвуковой лайнер был убран из коммерческой эксплуатации.
Достижения зарубежом
В 2003 году закончилась эпоха сверхзвуковых «Конкордов», которые были произведены французско-британским производством и больше не использовались в коммерческих целях. В 60-х годах началось активное развитие зарубежной авиации, когда различные конструкторские бюро работали над созданием новых бомбардировщиков, истребителей и самолетов для разведывательных миссий.
Со скоростью звука и даже выше способен передвигаться легендарный истребитель пятого поколения F-22 «Raptor», использующий продвинутые технологии «stealth» (понижения заметности) и изготовленный из композитных полимерных и радиопоглощающих материалов. F-22 оснащается парой турбореактивных двухконтурных двигателей, обладающих высокой бесфорсажной тягой, которая позволяет истребителю передвигаться на гиперзвуковой скорости без задействования форсажа.
«Raptor» использует интегрированные системы связи, распознающие «своих» и «чужих» посредством радиолокационных датчиков. Самолеты вооружены 20-миллиметровыми пушками, корректируемыми снарядами, а также ракетами класса «воздух-воздух». Недостатком F-22 считается низкий объем топливных баков, делающий его зависимым от дозаправки в условиях воздушного пространства.
Сверхзвуковая авиация на данный момент
На текущий момент авиация не располагает полноценными аналогами «Конкордов» и ТУ-144, поскольку эти самолеты не соответствуют высоким требованиям безопасности и требуют слишком больших материальных затрат на заправку топливной смесью и содержание. Самой перспективной разработкой считается «Baby Boom XB-1», способный развивать скорость до 2,5 маха (2336 км/час). Лайнер отличается скромными габаритами: размах его крыльев составляет 5 метров, длина — 20 метров. XB-1 выполнен из легких композитных материалов и оснащается широкими задними кромками.

Российские инженеры-конструкторы по указанию президента создали гиперзвуковой бомбардировщик ТУ-160. Он оснащен цельноповоротным килем, стабилизаторами, флаперонами, интерцепторами, а также стреловидным или треугольным крылом в зависимости от модификации. В самолете установлены четыре двухконтурных трехвальных двигателя и топливная система из 13 резервуаров, заполненных азотированным авиационным топливом. Основная задача ТУ-160 — транспортировка аэробаллистических гиперзвуковых ракет в качестве ракетоносца.

С помощью крыла нестандартной конфигурации можно уменьшить тепловую нагрузку на центральные элементы космических кораблей и баллистических ракет, а также уменьшить сопротивление воздуха для увеличения дальности полета ракет, пуль и снарядов.
Технические характеристики
Гиперзвуковое судно летит со скоростью более 1192 км/час и должно иметь хорошие летные характеристики и минимальное сопротивление, чтобы двигаться в воздушном пространстве. Сравнительно с современным пассажирским самолетом, чей средний показатель скорости составляет около 820 км/час, гиперзвуковой летательный аппарат имеет скорость более 2110 км/час.
На какой высоте летают гиперзвуковые лайнеры? Самолеты подобного класса способны передвигаться в воздушном пространстве на высоте более 15 тысяч метров. К примеру, пассажирский лайнер «Конкорд» при перелетах поднимался на высоту 18 тысяч метров над землей, максимальная высота полета сверхзвукового самолета превышает 20 тысяч километров. NASA не так давно анонсировала запуск в серийное производство военных истребителей X-59 «Quesst», разработкой которых занимаются инженеры корпорации «Lockheed». На базе данного прототипа будут созданы и пассажирские лайнеры, способные передвигаться на высоте до 17 тысяч метров со скоростью свыше 1500 км/час.
Будущее сверхзвуковых полетов
Генеральный директор корпорации Boeing сказал, что в ближайшее десятилетие гиперзвуковые самолеты выйдут на новый виток своего развития, однако вопрос об экономичности скоростных рейсов на текущий момент до конца не решен. Совсем недавно компания «Боинг» представила проект пассажирского самолета, способного превышать скорость звука в несколько раз. Сотрудники американской «Boom Technology» обещают в ближайшие годы выпустить в серийное производство лайнер, который сократит продолжительность любого трансконтинентального рейса в 2,5 раза.

«Aerion Supersonic» из США анонсирует появление джетов бизнес-класса AS-2, оснащенных тремя двигателями и предназначенных для перевозки состоятельных пассажиров.