контроллер управления двигателем квадрокоптера

Содержание
  1. UART (последовательные порты)
  2. Количество последовательных портов в полетном контроллере
  3. Инвертирование сигнала последовательного порта
  4. Регуляторы, встроенные в моторы
  5. Регуляторы с BEC и без него (Opto ESC)
  6. Подключение регулятора к мотору
  7. Регуляторы и тяга
  8. Напряжение питания
  9. Бензиновые квадрокоптеры и мультикоптеры. Краткий обзор
  10. Протоколы
  11. ESC для конструкторов
  12. История изменений
  13. Регуляторы «4-в-1»
  14. Полетные контроллеры «всё-в-одном» и их функционал
  15. Загрузчик
  16. Активное торможение и аппаратный ШИМ (Active Braking и Hardware PWM)
  17. Формат крепежа
  18. Прочие топовые контроллеры из прошлого
  19. Matek F405 и FCHub VTX
  20. Matek F405 CTR
  21. DYS F4 Pro
  22. Процессор
  23. SILABS F330 и F39X
  24. Busybee (EFM8BB)
  25. Производительность 8-битных микроконтроллеров
  26. 8 бит и 32 бита
  27. Процессор (микроконтроллер)
  28. Raceflight (1 плата)
  29. Revolt F4
  30. Автоматический тайминг или ручной?
  31. Прошивка
  32. BLHeli_S
  33. BLHeli_32
  34. Максимальный ток — Амперы
  35. Выясняем потребляемый ток
  36. Тяга и потребляемый ток в тестах
  37. Плохие аккумуляторы
  38. Использование регуляторов значительно более мощных, чем необходимо
  39. Прошивки для ПК
  40. Интерфейс и настройка
  41. KISS (1 плата)
  42. Kiss FC V2
  43. CL Racing F7 V2 DAUL — лучший полетник для регуляторов 4-в-1
  44. Holybro Kakute F7 AIO — лучший полетник для отдельных регуляторов
  45. Лучшие полетные контроллеры на Betaflight
  46. Какие задачи решают контроллеры для квадрокоптеров?
  47. Какие запчасти для квадрокоптеров мы предлагаем?
  48. Гироскопы (Gyro), инерциальная навигация (IMU)
  49. Что лучше высокая частота опроса или шум?
  50. I2c или SPI?
  51. Виды электродвигателей для квадрокоптеров
  52. Расположение элементов
  53. Прочие функции
  54. Типы разъемов
  55. BEC (стабилизатор напряжения)
  56. Управление камерой
  57. Кнопка boot (активация загрузчика)
  58. Анатомия
  59. LDO (стабилизатор напряжения)
  60. Драйверы ключей (gate drivers)
  61. Силовые транзисторы (MOSFET)
  62. Размер и вес
  63. Бренды

UART (последовательные порты)

UART расшифровывается как Universal Asynchronous Receiver/Transmitter, что означает асинхронный последовательный порт.

UART — это, как правило, аппаратный последовательный интерфейс, который позволит вам подключить разные внешние устройства к полетному контроллеру. Например, приемник, телеметрию, транспондер для гонок, управление видеопередатчиком и т.

У каждого последовательного порта два контакта: TX — для передачи, RX — для приема. Запомните, TX на периферийном устройстве подключается к RX на полетном контроллере и наоборот!

Пример: на полётнике есть UART3 (контакты R3 и T3) и UART6 (контакты R6 и T6). Вы можете назначить им задачи на вкладке Ports в Betaflight конфигураторе.

what-is-uart-flight-controller-fc-ports-tab-betaflight-1024x582-1308041

Количество последовательных портов в полетном контроллере

Возможно, вам потребуются (а может и нет) дополнительные последовательные порты, чем больше свободных есть, тем проще будет в будущем.

Количество портов зависит от дизайна платы и используемого процессора. Например, на ПК с F1 обычно только 2 порта, у F3 и F4 может быть от 3 до 5, а у F7 — шесть или даже 7.

F1F3F4F7
2 порта3-5 портов3-6 портов6-7 портов

Инвертирование сигнала последовательного порта

Процессоры F3 и F7 могут инвертировать сигнал встроенным инвертором, а F1 и F4 — нет.

Сигналы Frsky SBUS и SmartPort являются инвертированными, поэтому владельцам ПК на F3 и F7 повезло, такие данные понимаются без проблем (F3 и F7 — более новые серии процессоров, подробнее тут).

Однако, более старые процессоры, типа F1 и F4 требуют наличия внешнего инвертора сигнала, который и подключается к соответствующему последовательному порту. Для удобства пользователей некоторые ПК на F4 уже имеют схемы для инверсии сигналов SBUS и SmartPort, так что приемник подключается напрямую к ПК. Если встроенного инвертора нет, то вам придется использовать одно обходных решений, например, программную эмуляцию последовательного порта (soft serial) или найти неинвертированный сигнал на приемнике.

Если портов не хватает, можно использовать программную эмуляцию (soft serial) чтобы «создать» ещё больше портов. К сожалению, эмулируемые порты работают медленнее аппаратных (нельзя выставить большую скорость) и не подходят для важных задач, где требуется быстрая реакция, например не подойдут для работы с приемниками. Ну и, конечно, программная эмуляция требует довольно много ресурсов процессора.

Регуляторы, встроенные в моторы

есть и такие устройства, например, ZTW Black Widow. С одной стороны, это удобно и экономится место, но на самом деле довольно спорное решение.

При ремонте или апгрейде приходится менять сразу пару устройств (регуль+мотор), что в долгосрочной перспективе заметно дороже.

Регуляторы с BEC и без него (Opto ESC)

Некоторые регуляторы включает в себя стабилизатор (BEC), который дает на выходе 5В (это напряжение можно использовать для питания полётного контроллера, приёмника и других компонентов). Есть регуляторы у которых BEC отсутствует, их маркетологи и производители часто называют «Opto», хотя очень часто никакой опторазвязки в них нет.

Оптопара — это оптический элемент, который передает сигнал при помощи света. Он отделяет высоковольтную часть схемы от низковольтной и предотвращает повреждение электроники высоким напряжением, снижает интерференцию сигналов.

Opto регуляторы имеют преимущество: меньший вес, размер и шум (т. схема управления мотором изолирована от управляющих схем: от приемника и полетного контроллера).

Однако без BEC на 5 вольт приходится использовать отдельный стабилизатор для питания приёмника и полётного контроллера (заметьте, у таких регуляторов всего 2 контакта на серворазъеме, а не три: есть земля и сигнал, но нет питания — красного провода).

brushed-esc-300x114-4620531

Регулятор с BEC

arduino-nano-flash-esc-configure-one-wire-blheli-linker-programmer-sn20a-300x205-2483135

Подключение регулятора к мотору

Я всё ещё помню, как сам начинал заниматься квадрокоптерами, начал я с подключения мотора к регулятору и думал: как же соединить 3 провода? До сих пор я очень часто получаю этот вопрос от новичков.

Не беспокойтесь о порядке подключения проводов, просто подсоедините все три провода от регулятора к проводам мотора, в любом порядке, как вам удобнее. Если мотор будет вращаться не в ту сторону, просто поменяйте два любых провода. Кроме того, направление вращения можно изменить в настройках через BLHeliSuite (если вы используете прошивку BLHeli). В случае регуляторов KISS, нужно просто закоротить два контакта, специально предназначенных для этой цели.

Регуляторы и тяга

При использовании некоторых регуляторов возрастает тяга моторов (при той же конфигурации: мотор, пропеллер, аккумулятор). Разница может достигать 20%. Однако это не значит, что регулятор качественный, есть и другие критерии: качество сборки, долговечность, диапазон напряжений питания, плавность управления, уровень создаваемых помех и т. Ещё влияет стиль полета.

Лично я не заморачиваюсь с этим, т. большинство современных регуляторов от известных брендов работают более-менее одинаково.

Напряжение питания

Некоторые регуляторы могут работать даже от 6-баночных аккумуляторов, другие — максимум 4S. Перед покупкой убедитесь, что они совместимы по напряжению. Если подать на регуль слишком большое напряжение, то он просто сгорит, возможно вместе с моторами.

Бензиновые квадрокоптеры и мультикоптеры. Краткий обзор

q6zsb-wqsi5xu14xfh-1lfqyalm-8448672

Квадрокоптеры неожиданно ворвались в нашу жизнь и распространились повсеместно. Они получили свой второй шанс на жизнь, впервые появившись в первой половине прошлого века. Однако их основная проблема так до сих пор и не решена, — над чем и бьются множество компаний и отдельных энтузиастов.

Мультикоптер (англ. Multirotor, multicopter, многороторный вертолёт, многолёт) — летательный аппарат, построенный по вертолётной схеме, с тремя и более несущими винтами
Многовинтовые вертолёты разрабатывались ещё в первые годы вертолётостроения. Один из первых квадрокоптеров (англ. quadcopter, четырёхроторный вертолёт), который реально оторвался от земли и мог держаться в воздухе, был создан Георгием Ботезатом и испытан в 1922 году.

Источник картинки: wikipedia. org

Новое рождение мультикоптеры получили в XXI веке, уже как беспилотные аппараты. Благодаря простоте конструкции квадрокоптеры часто используются в любительском моделировании, также удобны для недорогой аэрофото- и киносъёмки.

По принципу управления мультикоптеры существуют:

  • автономные
  • дистанционно-управляемые (беспилотные)

Мультикоптеры имеют 3 или более винтов постоянного шага (автомата перекоса, в отличие от одно- и двухвинтовых аппаратов, нет). Каждый винт приводится в движение собственным двигателем. Половина винтов вращается по часовой стрелке, половина — против, поэтому рулевой винт мультикоптеру не нужен. Маневрируют мультикоптеры путём изменения скорости вращения винтов. Например:

  • ускорить все винты — подъём;
  • ускорить винты с одной стороны и замедлить с другой, что приведет к наклону, после чего — выровнять скорости и продолжить движение в сторону, в таком наклоненном положении;
  • ускорить винты, вращающиеся по часовой стрелке, и замедлить вращающиеся против — поворот в плоскости.

Микропроцессорная система переводит команды радиоуправления в команды двигателям. Чтобы обеспечить стабильное зависание, мультикоптеры в обязательном порядке снабжают тремя гироскопами, фиксирующими крен аппарата. Как вспомогательный инструмент, иногда, также используется акселерометр, данные от которого позволяют процессору устанавливать абсолютно горизонтальное положение, и бародатчик, который позволяет фиксировать аппарат на нужной высоте. Также применяют сонар для автоматической посадки и удержания небольшой высоты, а также для облёта препятствий. Использование GPS-приёмника позволят записывать маршрут полёта заранее, с компьютера а также возвращать аппарат в точку взлёта, в случае потери управляющего радиосигнала, или снимать параметры полёта оперативно или потом.

Винты могут быть установлены непосредственно на вал двигателя, либо через редуктор. В любительских и профессиональных мультикоптерах используются коллекторные и бесколлекторные электродвигатели и литий-полимерные аккумуляторы в качестве источника энергии. Это накладывает определённые ограничения на полётные характеристики: типичная масса мультикоптера составляет от 1 до 4 кг, при времени полёта от 10 до 30 минут (30—50 минут у уникальных единичных экземпляров). Запас энергии батарей позволяет отдельным моделям мультикоптеров улетать на расстояние до 7—12 км, на практике же радиус действия (максимальное расстояние, на которое они способны улететь с последующим возвратом в точку взлёта) обычно ограничено прямой видимостью (100—200 м при ручном управлении) либо дальностью действия аппаратуры радиоуправления и видеолинка. При этом лучшие образцы подобной аппаратуры, использующие усилители мощности радиосигнала и систему направленных антенн, способны обеспечивать стабильные: радиоуправление и видеолинк на расстояния до 100 км. Таким образом, наибольшее ограничение на радиус действия мультикоптеров накладывает именно время полёта.

Эти ограничения приводят к тому, что мультикоптеры обычно используются как аппараты «ближнего радиуса действия»: для любительских полётов недалеко от себя, для фото-видеосъёмки близко расположенных объектов и так далее (для сравнения, беспилотные самолёты с аккумулятором аналогичной ёмкости могут улетать на 10—15 км при высоте полёта 1—2 км).

Поднимаемый полезный груз моделями мультикоптеров среднего размера и грузоподъёмности — от 500 г до 2—3 кг, что позволяет поднять в воздух небольшую фото- или видеокамеру (обычно экшн-камера в более дешёвых моделях, либо зеркальные камеры в профессиональных).

Существуют и достаточно крупные модели мультикоптеров, с количеством роторов порядка 6—8 (гекса- и октокоптеры), способные поднять в воздух груз массой до 20—30 кг. Для увеличения грузоподъёмности применяют соосное расположение несущих роторов, что в случае гексакоптера, например, даёт 12 моторов и 12 пропеллеров, расположенных попарно на 6 несущих лучах.

Скорость полёта мультикоптера может быть от нуля (неподвижное висение в точке) до 100—110 км/ч.

Существуют также трёх- и пятивинтовые вертолёты (три- и пентакоптеры). Один из моторов там располагается на нанизанной на ось подвижной платформе, угол поворота которой изменяется сервоприводом — так и осуществляется поворот аппарата вокруг своей оси. Отдельно стоит отметить экспериментальные аппараты: бикоптеры, квадрокоптеры с изменяемым шагом пропеллеров, квадрокоптеры с двигателями на импеллерах, однако они не получили какого-либо распространения.

Большое количество энтузиастов занимается самостоятельной сборкой коптеров. Часто для этих целей они используются широко известный недорогой полётный контроллер KK Multicopter, который имеет несмотря на свою низкую цену, достаточно широкие возможности и позволяет управлять системой, содержащий до 6 роторов включительно.

Источник картинки: www. quad-copter

Следует упомянуть, что большая часть современных мультироторных систем представляет собой электрические машины, где тяговыми двигателями выступают электродвигатели, а в качестве источника энергии для них используются, в основном, литий-полимерные аккумуляторные батареи.

Исходя из всего вышесказанного, проистекает основная проблема мультироторных электрических систем: малое время работы (ввиду гораздо меньшего соотношения ёмкости аккумуляторных батарей к их весу, то есть энергоёмкости, по сравнению с любыми топливными системами) и невозможность подзарядки аккумуляторов в полевых условиях, ввиду отсутствия такой возможности.

Кроме того, грузоподъёмность мультироторных систем оставляет желать лучшего. Они вполне годятся для перевозки небольших грузов, однако стоимость системы, которая сможет стать полноценным средством передвижения или перевозки пассажиров, будет достаточно внушительной. Справедливости ради, однако, следует отметить, что в последнее время начинают практически реализовываться идеи некоего летающего городского такси, которое как раз будет построено на основе мультироторной электрической системы.

Однако, как уже было сказано ранее, мультироторные системы появились не вчера, изначально они представляли собой исключительно системы на двигателях внутреннего сгорания.

И не так давно, в середине 2010-х годов появилось достаточно интересная система, которая «возвращалась к истокам» и представляла собой квадрокоптер бензинового типа — Nitro Stingray.

В отличие от своих электрических собратьев, эта система в своей основе имела в качестве силовой установки двигатель внутреннего сгорания, от которого крутящий момент передавался на все четыре несущих ротора:

Этот квадрокоптер отличался тем, что он имел один центральный двигатель, а присущая мультикоптерам подвижность,- обеспечивалась четырьмя винтами, с изменяемым шагом:

Ввиду высокой энергоёмкости сжигаемого топлива, этот квадрокоптер имел относительно небольшой вес, если сравнивать его с электрическими собратьями, высокую удельную грузоподъёмность, а также подвижность, о чём было сказано ранее.

В это же десятилетие отметились несколько известных проектов, которые пытались решить проблему недостаточной грузоподъёмности электрических устройств таким же путем, — использованием центрального двигателя и передачи крутящего момента, в то время как управление осуществлялось регулировкой шага винтов.

Одним из таких проектов является проект Incredible HLQ (Heavy Lift Quadcopter), который даже запускал свою кампанию на kickstarter com.

Вот что говорили о нём его создатели:

«Мы — группа студентов-механиков, работающих над нашим главным проектом в Государственном университете Сан-Хосе в Сан-Хосе, Калифорния. В состав группы входят 4 участника: Ник Коновер, Крис Фулмер, Карлос Герреро и Габриэль Теллез. Каждый из нас обладает особым набором навыков и специализируется в 2 различных дисциплинах: мехатроника и конструирование.

Мы проектируем и строим квадрокоптер с большой грузоподъёмностью (HLQ), который мы называем Incredible HLQ (звучит как «Халк»). Как и супергерой, HLQ сможет поднимать и транспортировать огромное количество веса для своего размера и стоимости. HLQ сможет автономно извлекать и доставлять 50 фунтов (~22,7 кг) полезной нагрузки.

Чтобы достичь цели в 50 фунтов, HLQ будет использовать трансмиссию, приводимую в действие двумя бензиновыми двухтактными двигателями мощностью около 12,5 л. каждый. Подъём будет осуществляться с помощью четырёх головок несущего винта коммерческого радиоуправляемого вертолёта с четырьмя лопастями диаметром 435 мм. Выбор этих лопастей был основан на реальных испытаниях подъёмной силы на нашем испытательном стенде, которые показаны в видео. Управление достигается за счёт использования управления переменным шагом винтов для изменения подъёмной силы каждого ротора.

Управление полётом будет использовать модуль DIYDrone Ardupilot APM2. 5 +. Ardupilot — это плата управления на базе Arduino с открытым исходным кодом для БПЛА. Он широко используется для многих летательных аппаратов с неподвижным крылом, вертолётов и многороторных летательных аппаратов и имеет подтверждённый послужной список.

Кроме того, мы будем использовать систему компьютерного зрения для идентификации и отслеживания полезной нагрузки с помощью библиотеки OpenCV на Roboard RB-110. RB-110 — это полноценный компьютер на одной плате. Он имеет 486-совместимый процессор с тактовой частотой 1 ГГц и может работать под Windows, Linux или Dos. HLQ — дорогостоящий проект для большинства старших инженерных проектов в SJSU (Государственный университет Сан-Хосе). Затраты выходят за рамки того, что мы, студенты, можем себе позволить, и поэтому ваша поддержка имеет решающее значение для нашего успеха».

У проекта есть свой канал на YouTube, где они публикуют последние новости о разработках. Несмотря на большое количество затраченного времени, в данный момент проект всё также находится в стадии разработки, последнее видео о новостях проекта вышло в мае 2020 года:

Ещё одним достаточно известным проектом является Goliath Mkll.

Проект стартовал примерно в то же время, что и первый, также в 2014 году и имеет свой канал на YouTube, но так же как и первый проект, — до сих пор находится в стадии разработки:

Достаточно долгое время идея бензиновых грузоподъёмных мультироторных систем пребывала в запустении, в течение всего десятилетия 2010-х. По крайней мере, не было ничего особо заметного, что бы громко заявило о себе в блогосфере или интернете в целом.

Однако, в последние 3-4 года, ситуация похоже сдвинулась с мёртвой точки, — разработчики похоже учли сложность создания системы с изменяемым шагом винтов, и пошли другим путём: один за другим стали появляться проекты, которые сочетают в себе преимущества двух подходов,- электрического и бензинового.

Как правило, эти проекты построены приблизительно по одной и той же схеме: классическая мультироторная система, где несущие роторы базируются на основе электрических двигателей, в то время как источником энергии для питания системы являются не аккумуляторы, а используется портативная бортовая электростанция внутреннего сгорания — для выработки электроэнергии.

Такого типа дроны позиционируются как средства для опыления полей от вредителей. Ввиду своей грузоподъёмности и большого времени работы, они могут брать на борт большой бак с жидкими инсектицидами и работать долгие часы, проходя большую площадь.

Хотя, кое-кто развивает и альтернативные технологии. Как, например, проект ниже, о котором, к сожалению, ничего не известно, кроме технических характеристик, показанных в видео. Мультикоптерная система, предположительно, имеет синхронизирующие валы между парами отдельных двигателей, для выравнивания их скоростей, проходящие внутри труб — каркаса. А управление осуществляется наклоном каждого конкретного двигателя:

В качестве заключения: Некоторое время назад, вышло видео, где сноубордист, прицепленный к квадрокоптеру, катается на фоне заснеженных ландшафтов:

Неожиданный подход, продемонстрированный в видео, произвёл впечатление на многих и широко разошёлся по блогосфере. Однако любой, более-менее близко знакомый с технической стороной «коптеростроения», понимает, что построение подобного коптера, — обойдётся в круглую сумму!

Но благодаря продемонстрированному строителями сельскохозяйственных коптеров подходу, данная затея уже не кажется такой безумной!

Предположим некий мультикоптер, который может поднимать человека, построенный по электрической схеме, и питающийся от бортовой электростанции. Ввиду мультироторной схемы, такой коптер будет обладать высокой подвижностью, в то же время, обладая высокой грузоподъёмностью, что позволит использовать его для такого интересного применения как дрон-бординг (катание за дроном, на прицепе)! Или скажем, в качестве манёвренного мощного дрона, для доставки грузов.

Для снижения шума от работы двигателя бортовой электростанции, дрон может лететь на большой высоте, поэтому это не будет проблемой.

oug5kh6sjydt9llengsiebnp40w-5941950

Протоколы

Протоколы, используемые в регуляторах скорости определяют скорость передачи сигнала от полетного контроллера к самому регулятору, а это может оказать заметное влияние на поведение коптера. Оригинальный (самый старый) протокол — PWM или ШИМ, имеет задержку до 2 мс, а один из самых быстрых — Multishot — 5-25 мкс.

oneshot-esc-pwm-explain-300x240-4705971

Вот список протоколов, используемых в регуляторах коптеров (от старых к новым):

  • PWM
  • Oneshot125
  • Oneshot42
  • Multishot
  • DShot (DShot150, DShot300, DShot600, DShot1200)
  • ProShot

Подробнее читайте в отдельной статье про протоколы. Не каждый регулятор поддерживает все протоколы, перед покупкой убедитесь, что необходимый протокол поддерживается.

ESC для конструкторов

Для максимальной точности в управлении летательным аппаратом нужно установить соответствующее оборудование. Контроль над скоростью вращения пропеллеров позволяет выполнять остановку в воздухе, а также даёт правильно и плавно снижаться при посадке. Купить ESC для конструкторов коптеров вы можете в интернет-магазине «Quadrone».

esc202-6979889

Сама аббревиатура ESC значит «Electronic Speed Controller» (электронный контроллер скорости). Он устанавливается на бесколлекторных моторах, что позволяет передавать энергию от аккумулятора непосредственно к обмотке внутри двигателя. В наличии большой выбор ESC для квадрокоптеров:

  • DJI Phantom 2 Vision
  • Walkera QR X800

История изменений

  • март 2017 — первая версия статьи
  • июль 2017 — обновление статьи, сделаны отдельные разделы для разных прошивок (BF, RF, KISS), добавлены DYS F4, Kakute F4, Matek F4; убраны Lux V2 и DRC Soul
  • Январь 2018 — обновил список
  • Август 2018 — обновление списка: Kakute F7, Fireworks V2
  • Ноябрь 2018 — CL Racing F4S заменен на F7
  • Сентябрь 2019 — обновление списка

Регуляторы «4-в-1»

Еще один удобный вариант — регулятор 4 в 1, по сути, это 4 отдельных регулятора скорости расположенных на одной плате, размером как полетный контроллер или PDB (плата распределения питания). Такие регуляторы и полётник можно собрать в стек, что упрощает разводку проводов. Однако повреждение 1 регулятора ведет к замене целой платы. Компромисс между риском и удобством.

В качестве компромисса некоторые производители выпускают отдельные регуляторы, которые можно соединить между собой и получить плату 4-в-1, например Quadrant 4-in-1. Ещё одно преимущество плат 4-в-1 — более правильно распределение веса в коптере, основная масса компонентов оказывается в собранной в одном месте, что дает меньший момент инерции коптера. Благодаря этому увеличивается его отзывчивость.

fvt-littllebee-pro-20a-x-4-4-in-1-esc-blheli-top-300x179-5557101

Регуляторы 4-в-1 обычно ставятся прямо под полетным контроллером, поэтому есть смысл подумать о помехах, которые могут повлиять на летные характеристики и качество видео. Попробуйте их экранировать (англ).

Полетные контроллеры «всё-в-одном» и их функционал

Полетники «Всё-в-одном» («All In One») имеют встроенную плату распределения питания (PDB) и огромные контакты для толстых проводов, идущих от аккумулятора. Термин появился в те времена, когда обычно применялись отдельные PDB со стабилизаторами питания для полетных контроллеров, но сейчас в ПК встраивают очень много компонентов, так что термин теперь значит немного другое.

Одной из первых функций, которую встроили в ПК — это OSD (экранное меню) — Betaflight OSD.

Ещё одна бесценная фишка — датчик тока: с ним гораздо проще оценить степень разряда аккумулятора, и он же отличный инструмент для тестирования. Тут более подробно про его калибровку (англ).

Также часто в ПК встраивают барометр и магнитометр (компас).

Нет «правильного» полётника «все-в-одном», но при желании можно найти плату, в которой есть всё, даже приёмник, видеопередатчик и даже регуляторы.

Первым таким ПК у меня был RacerStar Tattoo F4S, он не очень надежный.

Загрузчик

Раньше, когда было много разных прошивок, загрузчик был важен при прошивке. Загрузчик — это очень маленькая программа, которую нужно прошить в регулятор; она дает доступ к этому регулятору и позволяет менять/обновлять/настраивать прошивку.

В настоящее время, не стоит даже задумываться об этом, т. все новые регуляторы идут с прошивкой BLHeli и с загрузчиком BLHeli. Если вам любопытно, то вот ещё немного информации о загрузчиках:

Без загрузчика можно обновлять прошивку и менять настройки регуляторы только напрямую подключившись к чипу-микроконтроллеру (англ. ) или подпаявшись к специальным контактным площадкам на плате (если они, конечно, есть). При прошивке этим способом, можно заодно прошить и загрузчик.

У прошивок SimonK и BLHeli имеются свои загрузчики. Загрузчик от BLHeli имеет более широкий функционал, делая прошивку и настройку заметно проще. Раньше мы могли прошивать только через сигнальный провод, используя интерфейс 1-wire (англ). Сейчас есть более удобный, «сквозной» (passthrouh) метод, при этом полетный контроллер выступает в роли программатора.

Активное торможение и аппаратный ШИМ (Active Braking и Hardware PWM)

Есть несколько фишек регуляторов о которых вы обязательно должны знать:

  • Активное торможение или Damped Light или Active Braking — улучшает отзывчивость
  • Аппаратный ШИМ (Hardware PWM) — улучшает отзывчивость и плавность, делает ваш квадрик заметно тише и немного более энергоэффективным. Дает немного более точное управление
  • Отдельный драйвер затворов полевых транзисторов — дешевые регуляторы используют обычные транзисторы для управления мощными силовыми транзисторами, использование специальных аппаратных драйверов улучшает активное торможение

Формат крепежа

В данном случае подразумевается расстояние между монтажными отверстиями в плате полетного контроллера. Обычно это 30,5 х 30,5 мм, 20 х 20 мм или 16 х 16 мм. Формат крепежа определяет как размеры платы, так и размеры модели. В коптерах с 5″ пропами обычно используются ПК с крепежом 30,5 х 30,5, в более мелких коптерах — 20 х 20 мм. Формат 16 х 16 мм набирает популярность в классе коптеров с диагональю до 100 мм.

flight-controller-mounting-pattern-holes-fc-racing-drone-mini-quad-1024x768-3733904

Нижеследующий список содержит контроллеры из нашего прошлого, они не попали в основные списки из-за других, более новых ПК. Однако я хочу их упомянуть, потому что в некоторых случаях их стоит иметь в виду при покупке.

Matek F405 и FCHub VTX

Matek F405 — это простой полетный контроллер с Betaflight OSD и слотом для MicroSD. У него нет PDB, но его можно подключить к FCHUB VTX используя шлейф.

Комбо-набор Matek F405 и FCHUB VTX — это тоже самое, что ПК, PDB и видеопередатчик, но с некоторыми реально хорошими улучшениями. Перенос элементов с большими токами и напряжениями подальше от процессора и гироскопов дают вам более чистый сигнал, улучшает летные характеристики и надежность. ПК и PDB можно закрепить при помощи демпферов, при этом не будет тяжелых проводов, передающих вибрации.

По шлейфу в том числе передается и сигнал управления видеопередатчиком, так что можно менять частоты и выходную мощность при помощи аппаратуры управления.

Однако, если вам нужен видеопередатчик с большой мощностью или с режимом PitMode, тогда FCHUB не для вас. Кроме того, ваша рама должна иметь место для установки стека из двух плат.

Matek F405 CTR

  • F4, MPU6000
  • Betaflight OSD
  • Встроенная PDB
  • 5 UART
  • Слот для MicroSd флэшки
  • BEC: 5V/2A

CTR — это новая версия Matek F405 AIO.

AIO — довольно хороший ПК с отличным функционалом и удобным расположением элементов. Однако, было довольно много жалоб на рывки по курсу и сильные вибрации, из-за очень чувствительных к шуму гироскопов.

И вот, наконец, Matek решили заменить гироскопы, на более устойчивые к шуму MPU6000, ну и добавили ещё кое-какие улучшения. Прочитав наш обзор, вы узнаете, почему это один из лучших ПК для Betaflight и iNav.

DYS F4 Pro

  • F4, MPU6000 SPI
  • Софтмаунт
  • Betaflight OSD
  • Встроенная PDB
  • 5 В / 3 А BEC
  • 8MB памяти для blackbox
  • Питание: 2S – 6S

По функционалу DYS F4 очень похож на Kakute F4. Отличное расположение элементов, контактные площадки для силовых проводов (питание, регули) выступают за пределы платы, что упрощает пайку.

Только один последовательный порт с аппаратной инверсией сигнала для SBUS. Если нужна телеметрия, то придется использовать неинвертированный сигнал. Для тех, кто не планирует использовать Smart Port — это не проблема, это просто еще один дополнительный порт для прочих устройств (инвертированный UART нельзя использовать для других устройств).

Процессор

Большинство современных регуляторов используют микроконтроллеры фирм Atmel, Silabs или ARM Cortex. Разные микроконтроллеры имеют различную производительность и работают под управлением разных прошивок.

  • на Atmel (8 бит) можно использовать как SimonK так и BLHeli
  • на SiLabs (8 бит) можно использовать только BLHeli или BLHeli_S
  • Atmel ARM Cortex 32-bit, STM32 (конкретнее: STM32 F0) — BLHeli_32

Восьмибитные регуляторы на ATMEL раньше были очень популярны, потом, благодаря больше производительности, доминировать начали микроконтроллеры от Silabs. В 2016 году появились регуляторы на 32-битных микроконтроллерах.

SILABS F330 и F39X

Регуляторы, основанные на чипах SiLabs можно разделить на группы по сериям микроконтроллеров, 2 основные это F330 и F39X (F390 и F396).

F330 — имеет низкую тактовую частоту, и с ним могут возникнуть проблемы при использовании моторов с большим KV. У F39X нет таких проблем, они также поддерживают протокол Multishot (он в 10 раз быстрее, чем Oneshot125) и Oneshot42. Два наиболее известных регулятора: Littlebee 20A (F330) и DYS XM20A (F39X).

dys-xm-seris-xm20a-blheli-mini-20a-esc-300x237-2158885

DYS XM20A – F390

Busybee (EFM8BB)

Микроконтроллеры Busybee  — это обновление F330 and F39X. Если у вас прошивка BLHeli_S, то скорее всего в регуле стоит чип Busybee:

  • BusyBee1 – BB1 (EFM8BB10F8)
  • BusyBee2 – BB2 (EFM8BB21F16)

Эти модели используют аппаратный ШИМ (PWM) вместо программной эмуляции, в результате мы получаем более плавную реакцию на изменение газа и есть поддержка протокола D-Shot. Это дешевые, но хорошие регуляторы.

Пример: Aikon SEFM 30A и DYS XS30A.

aikon-sefm20-blehli_s-esc-300x258-5139841

Aikon SEFM 20A – BusyBee

Производительность 8-битных микроконтроллеров

Если кратко, то в порядке от лучших к худшим:

  • BB2
  • BB1
  • F39X
  • F330
  • Atmel-8-bit

8 бит и 32 бита

32-битные микроконтроллеры имеют больше вычислительных мощностей, с ними появляются возможности, недоступны 8-битным. Например, «ESC Telemetry», датчики тока, программируемые RGB светодиоды и т.

Однако до сих пор в продаже есть куча 8-битных регуляторов т. у них имеется весь минимально необходимый функционал типа DShot, RPM filter и т. по очень доступной цене. Для множества пилотов этого достаточно.

  • Декабрь 2014 — первая версия статьи
  • Ноябрь 2016 — добавлена информация о прошивках, обновлен список фич в ПК
  • Февраль 2017 — обновлена информация о процессорах и гироскопах
  • Апрель 2017 — добавлена инфографика об эволюции полетных контроллеров, обновлен список процессоров
  • Май 2018 — обновлена информация об интеграции функций в ПК
  • Октябрь 2018 — добавлена информация о форматах крепежа
  • Февраль 2020 — изменен адрес страницы, обновлены разделы о прошивках, гироскопах, добавлен схемы подключения и информация о платах «все-в-одном», компоновку разъемов и управление камерой

Процессор (микроконтроллер)

Процессоры в полетных контроллерах на самом деле должны называться не процессорами, а микроконтроллерами; в них хранится прошивка и они же её исполняют.

В настоящее время есть 5 основных типов процессоров: F1, F3, F4, F7 и H7. В основном они отличаются размером памяти и вычислительными мощностями.

F1F3F4F7H7
Частота72 МГц72 МГц168 МГц216 МГц480 МГц
Память128 кБ256 кБ1 МБ1 МБ128 кБ

Подробнее про различия между сериями процессоров F1, F3, F4 и F7

Мы рекомендуем брать F4 или F7, новые прошивки уже не поддерживают серии F1 и F3, т. в них недостаточно места.

flight-controller-fc-proccessor-stm32-f1-f3-f4-f7-cpu-chip-1024x322-5240806

Процессоры для ПК (слева направо): STM32 F1, F3, F4

Raceflight (1 плата)

До того, как исходники прошивки стали закрытыми, была поддержка и других ПК. Думаю, что они идут по пути KISS и не оставят своим пользователям выбора, кроме как использовать только их железо.

Revolt F4

best-fc-mini-quad-march-2017-revolt-f4-raceflight-300x286-2240067

  • Процессор F4, гиры Invensense 20602
  • Разработан для Raceflight

ПК Revolt F4 разработан командой Raceflight и специально для Raceflight. Используется самая большая частота обновления данных с гироскопов — до 32 кГц.

Кто-то может не согласиться с мнением «быстрее — значит лучше», но многие пользователи были впечатлены полетом на Revolt F4 с прошивкой Raceflight. Их софт: RF1 (Raceflight One) также развивается в сторону упрощения настройки коптера пользователем.

Revolt F4 — это просто ПК безо всяких свистелок и перделок. Даже встроенного BEC нет, т. ему требуется внешнее питание (и дополнительный контакт BAT+ для контроля напряжения на аккумуляторе). RF объясняют это тем, что хотели минимизировать шумы. Но обычно в таких случаях пользователи жалуются на усложнение процесса сборки. Еще не хватает контакта VBAT, для измерения напряжения аккумулятора.

С тех пор появились несколько новых версий этого ПК с доп. функциями, например RevoltOSD, с поддержкой питания напрямую от LiPo аккумулятора, с OSD, а также Minivolt — по сути уменьшенную версию Revolt.

Кстати говоря, Lumenier Skitzo FC— это Revolt после ребрендинга, это та же самая плата, только другого цвета и с другой ценой.

Автоматический тайминг или ручной?

Есть два подхода к таймингу управления двигателями: автоматический (auto timing) и ручной (fixed timing), первый используется в регуляторах KISS, второй — в BLHeli. Оба подхода влияют на характеристики и надежность работы, подробнее объясняется тут (англ).

Прошивка

Две самые старые прошивки для регуляторов мультикоптеров — SimonK и BLHeli. Давным-давно регуляторы поставлялись с примитивными прошивками, написанными производителями, так что моделистам приходилось ставить сторонние прошивки, например SimonK или BLHeli. Потихоньку эти прошивки стали стандартными для большинства регуляторов, и в настоящее время почти все регуляторы идут с уже предустановленными BLHeli или SimonK.

Большинство пользователей выбирает BLHeli, потому что эта прошивка имеет очень простой интерфейс и богатый функционал. Более подробно про преимущества BLHeli и SimonK читайте тут (англ). В любом случае я считаю, что SimonK уже устарела, т. не обновляется, рекомендую использовать BLHeli.

BLHeli_S

Это второе поколение прошивки BLHeli, специально разработанное для регуляторов с аппаратным ШИМ (PWM). Имеет более простой интерфейс. Подходит для некоторых регуляторов типа: Aikon SEFM 30A, DYS XS и т.

BLHeli_32

Прошивка BLHeli_32 — это третье и самое свежее поколение BLHeli. Прошивка разработана специально для 32-битных микроконтроллеров, исходный код закрыт. Более мощные процессоры дают более плавное, точное и надежное управление моторами.

Максимальный ток — Амперы

Первая вещь, на которую нужно обратить внимание при выборе регулятора — это максимальный ток, он измеряется в амперах. Моторы потребляют энергию при вращении, если им нужен ток больше, чем может выдать регулятор, то регулятор начнет греться и в итоге откажет. Это катастрофа, и она может даже привести к полному сгоранию регулятора, в прямом смысле этого слова! Есть три вещи, которые влияют на потребляемый ток и могут перегрузить регуляторы:

  • Увеличение KV моторов
  • Увеличение размера мотора (диаметр и высота статора)
  • Более тяжелые пропеллеры (диаметр или шаг).

Есть два значения максимального тока: максимальный продолжительный ток и пиковый ток. Максимальный продолжительный ток (Continuous current) — это ток через мотор, который может выдавать регулятор скорости продолжительное время без вреда для себя. Даже в гонках вы не будете использовать максимальный газ продолжительное время, а регуляторы обычно способны выдерживать гораздо больший ток в течение короткого времени (порядка 10 секунд), это и есть пиковый макс. ток (burst current rating).

Некоторые новички ошибочно считают это значение током, который выдает регулятор на моторы: на самом деле всё наоборот. Это моторы определяют потребляемый ток, поэтому рейтинг регуляторов должен быть такой же, как у моторов (или выше). Но использовать очень мощные и большие регуляторы нет никакого смысла, например, если вы замените 20А регулятор 40-амперным, то коптер будет хуже летать из-за увеличившегося веса.

Выясняем потребляемый ток

При помощи стенда для измерения тяги и ваттметра можно самостоятельно выяснить потребляемый ток. Ну или просто поискать результаты тестов для вашей винтомоторной группы в онлайне. Некоторые производители моторов указывают такие вещи в описании.

Например, если вы используете FPVModel 2206 (англ. ) с винтом 5030 и аккумулятором 4S Lipo, то он будет потреблять 10 А при 100% газе, в этом случае регулятора на 12 А будет достаточно. Но, если вы планируете использовать винты 6045 с этим же мотором, максимальный ток может достигать 20 А, в этом случае безопаснее использовать регулятор на 20А.

Не страшно если вы выберите регулятор с небольшим запасом, но не нужно сходить с ума из-за этого. Вы можете использовать регулятор на 30 А или даже на 40 А, там, где требуется всего 20. Такая конфигурация будет работать, но это перебор, и вы просто увеличите вес и стоимость коптера (более мощные регуляторы дороже и весят больше).

Тяга и потребляемый ток в тестах

Имейте в виду, тесты тяги в статике, которые можно найти в онлайне, обычно показывают бОльшие значения, чем в реальных полетах (ток и тяга).

Во-первых, полетный контроллер всегда оставляет небольшой запас для стабилизации коптера, поэтому вы никогда не получите тягу 100% в реальном полете. Во-вторых, в полете моторам легче, т. они уже двигаются в воздухе, поэтому потребляемый ток ниже.

Чтобы проверить эту теорию я настроил OSD (экранное меню), которое показывает общий потребляемый ток во время полета. В моем случае это были моторы DYS Storm 2207 2500KV и пропеллеры DAL Cyclones 5045×3. В тестах тяги эти моторы потребляли 30А при 100% газе. Однако во время полета максимальный ток был около 22-25 ампер.

К тому же стили полета у всех разные, возможно вы не часто летаете на 100% тяге, в этом случае максимальный ток может быть ниже.

Плохие аккумуляторы

Ещё одна вещь, о которой стоит задуматься — какой ток может выдать ваш аккумулятор. Большинству 5″ коптеров хватит регуляторов на 20 А, т. четырехбаночные аккумуляторы емкостью 1300 — 1500 мА*ч просто не выдают бОльшую мощность продолжительное время, т. их не хватит чтобы спалить 20А регуляторы (при условии что они действительно рассчитаны на 20 ампер, и это не маркетинговый ход).

Регулей на 25 — 30 ампер достаточно в большинстве случаев. Даже если у вас высококачественный аккумулятор ёмкостью 1300 — 1600 мА*ч, то регулятор на 35 А всё равно перебор, хотя хуже не сделает и ничего не спалит.

Я выяснил, что большинство аккумуляторов 4S емкостью около 1500 мА*ч дают ток не больше 80 ампер.

Например, у вас винтомоторная группа, которая может потреблять до 120 ампер. Да, она будет потреблять такой ток, но обычно не более пары секунд. Из-за того, что аккумулятор не сможет выдать такой ток, его напряжение очень сильно просядет и ток станет значительно меньше.

Использование регуляторов значительно более мощных, чем необходимо

При использовании регуляторов с большим запасом по току вы получаете дополнительный вес, увеличенный размер и, возможно, большую цену. Достоинство такого подхода — меньше шанс их перегреть, а эффективность работы регулей немного выше.

На платах стоят «ключи» (силовые транзисторы или FET), которые и выполняют всю работу по управлению током. Если у вас более крупные и жирные ключи, рассчитанные на большой ток, то они будут греться меньше, чем мелкие ключи. Следовательно они могут быть немного более энергоэффективными, при этом оба варианта будут работать.

Прошивки для ПК

Помимо различий в железе, имеются различия и в прошивках, которые работают на этих ПК и у которых разный функционал и разные области применения. Например, iNAV разработан для использования с GPS, а KISS — больше предназначен для гонок.

Вот список прошивок для мини-коптеров. Если вы совсем в этом не разбираетесь, то мой вам совет, используйте Betaflight.

fc-firmware-list-mini-quad-rc-qaducotper-fpv-racing-drone-5649854

Самые популярные прошивки для полетных контроллеров

Betaflight — это прошивка с открытым исходным кодом, разрабатывается и поддерживается сообществом хоббийщиков. У нее самая большая пользовательская база, так что в случае каких-то вопросов вам быстро помогут. К тому же она поддерживает максимальное число полетных контроллеров.

Другие популярные прошивки для FPV дронов — это FlightOne и KISS. Их исходный код закрыт, а железо и сами прошивки поддерживаются только производителями, так что с ними работает очень небольшое число полетных контроллеров.

После того, как вы выберите прошивку, ищите совместимый с ней полетный контроллер.

Интерфейс и настройка

Современные прошивки для ПК можно настраивать, используя специальные программы, установленные на компьютер или смартфон; или даже прямо с пульта управления. У каждой прошивки свой пользовательский интерфейс управления, при помощи которого меняются настройки. Некоторые программы очень похожи друг на друга, но установка одних и тех же параметров в разных прошивках может дать совершенно разный результат, так что не торопитесь, а основательно изучите выбранную прошивку.

«Тюнинг» — этот термин мы используем, когда меняем ПИД коэффициенты (PID), рейты (rates) и некоторые другие настройки. При помощи тюнинга мы можем настроить коптер «под себя».

KISS (1 плата)

Из-за того, что прошивка без исходного кода, пользователи не имеют выбора.

Kiss FC V2

kiss-fc-v2-flight-controller-top-300x200-6914772

  • Процессор F7, гиры MPU6000
  • Идет с прошивкой KISS FC Firmware

После 2х лет ожидания, Flyduino наконец-то выпустила KISS V2 для замены первой версии ПК. У KISS огромная толпа фанатов, которым нравятся характеристики этих ПК. Когда вы платите $80 за KISS FC V2, то вы платите не только за железо, но и за закрытую прошивку, которая работает только на ПК KISS.

Лично я считаю, что KISS летает плавнее и мягче, чем Betaflight, которая летает более точно (больше похоже на движения робота). Не самое точно описание, но как уж смог.

Это один из первых контроллеров, сделанных в виде буквы «H» и с контактными площадками для подпаивания проводов. А еще они же первыми заменили сквозные отверстия для штыревых разъемов на плоские пятаки для пайки с обеих сторон платы.

Во второй версии улучшено расположение контактов, теперь регули подключаются по углам платы. Имеющийся разъем также упростит проводку при использовании определенных PDB. Установка и настройка значительно проще, чем Betaflight.

На KISS можно поставить Betaflight, но, по-моему, есть и другие, более удачные ПК для Betaflight. Причина выбора KISS — это их закрытая прошивка.

CL Racing F7 V2 DAUL — лучший полетник для регуляторов 4-в-1

cl-racing-f7-flight-controller-fc-top-300x225-4771137

  • F7, 2x ICM20602
  • Антивибрационное крепление
  • Betaflight OSD
  • PDB
  • 5V/3A BEC
  • 32MB памяти для черного ящика (Blackbox)
  • Напряжение питания: 2S — 8S LiPo

CL Racing F7 — это преемник популярных моделей CL Racing F4 и F4S. У него похожий дизайн, удобное расположение элементов и нормальный размер контактных площадок.

Это один из наиболее доступных полетных контроллеров в нашем списке, и при этом у него отличный набор функций: SmartAudio, ESC Telemetry, управление камерой (достаточно простого подключения, без резистора и конденсатора). Есть, конечно, и память для blackbox.

Процессор серии F7, поэтому не нужно ничего мудрить с инверсией сигналов SBUS и SmartPort.

CL Racing F7 разработан специально для работы совместно с регуляторами «4-в-1». Разъем для регулей позволяет использовать их телеметрию, а также общий датчик тока.

CL Racing F7 — один из первых ПК с функцией VTX pitmode, эта функция позволяет вам включать/выключать видеопередатчик тумблером на аппе.

Одна из отличительных черт второй версии — два гироскопа, они работают все время, а для уменьшения шума/помех данные усредняются. А вместе с RPM фильтром, тюнинг сильно упрощяется.

Вот полный обзор первой весии. Обзор второй версии (англ).

Holybro Kakute F7 AIO — лучший полетник для отдельных регуляторов

holybro-kakute-f7-fc-flight-controller-top-300x225-5841756

  • F7, ICM20689 SPI (32KHz Looptime)
  • Софтмаунт датчиков
  • Betaflight OSD
  • Встроенная PDB
  • 5 В / 2 А BEC
  • MicroSD слот для blackbox
  • Питание: 2S – 6S

У большинства ПК антивибрационное крепление используется для всей платы, но у Kakute F7 плата с гироскопами демпфируется отдельно. не нужно беспокоиться о демпферах, они уже есть. Гироскопы ICM относительно более шумные, но я не стал бы беспокоиться об этом, из-за довольно эффективного софтмаунта.

Недостаток этой системы — нужно убедиться, что гироскопы ничего не касаются, чтобы не передавались вибрации. вы не можете разместить сверху другие комплектующие типа приемника или видеопередатчика.

Если в ПК установлен процессор серии F4, то приходится возиться с инверсией сигнала для SmartPort телеметрии и для SBUS. Это не проблема если у вас проц F7, т. инверсия настраивается программно.

Ещё мне очень нравится расположение элементов на плате; шикарный функционал, но возможно он будет слегка сложноват для новичков, т. все контакты собраны в кучу. К счастью инструкция очень детальная и полезная.

Беспокойство вызывает только шлейф, который можно повредить при крашах. Его можно заменить, тем более что в комплекте есть запасной. Однако это требует некоторых навыков пайки.

Думаю, этот ПК подойдет опытным пилотам, которым нужна высокая скорость работы гироскопов и частота 32к. Есть и не AIO версия, которую можно использовать вместе с регуляторами 4-в-1. Подробнее в обзоре.

Лучшие полетные контроллеры на Betaflight

Основные характеристики полетных контроллеров в нашем списке:

  • Цена в районе $40-$50
  • Микроконтроллер F4 или F7
  • Гироскопы MPU6000
  • Наличие Betaflight OSD
  • Напряжение питания 4, 5 или даже 6S
  • Наличие какого-нибудь демпфирования

Кроме того, есть довольно специфичные полетные контроллеры (англ), например, для системы передачи HD видео от фирмы DJI.

Какие задачи решают контроллеры для квадрокоптеров?

Если говорить простым языком, то плата управления летательным аппаратом представляет собой его «мозги». Чем больше возможностей у дрона, тем сложнее устроены его контроллеры. Они нужны для решения следующих задач:

  • удержание высоты;
  • стабилизация полета;
  • движение в автоматическом режиме;
  • передача летных параметров на пульт;
  • подключение к периферийным устройствам;
  • управление подвесом и питанием;
  • контроль работы убирающихся шасси и так далее.

Полный перечень функций определяется моделью летательного аппарата.

Широкое распространение сегодня получили полетные контроллеры для квадрокоптеров марки Naza. Эти устройства относятся к средней ценовой категории, они отличаются богатой функциональностью и доступностью настроек даже для начинающего пилота.

Контроллеры для квадрокоптеров Naza расширяют свои возможности путем подключения различных дополнительных модулей. К примеру, это может быть:

  • GPS,
  • Bluetooth,
  • OSD.

В нашем каталоге имеются контроллеры для квадрокоптеров из разных ценовых категорий. Это позволяет выбирать их в зависимости от имеющихся потребностей (для профессионального применения или использования в качестве развлечения).

Какие запчасти для квадрокоптеров мы предлагаем?

В каталоге можно выделить несколько групп запчастей для квадрокоптеров:

  • корпуса, рамы, лучи, пропеллеры, посадочные шасси;
  • электродвигатели, регуляторы скорости, сервоприводы, контроллеры, навигация;
  • платы, кабели, шлейфы, коннекторы;
  • крепления, демпферы.

Кроме этого, имеются различные аксессуары для расширения возможностей самого летательного аппарата или пульта управления.

Начинающими пользователями востребованы различные корпусные запчасти для квадрокоптеров. На этапе обучения возможны падения, столкновения с препятствиями или жесткие посадки, при которых страдают пластиковые элементы. Конструкция современных дронов достаточно проста, поэтому данные детали могут быть заменены собственными силами.

Электромоторы, сервоприводы, шестерни и прочие находящиеся под корпусом узлы и элементы могут износиться или получить повреждения в случае серьезной аварии. У нас имеются запчасти для ремонта моделей квадрокоптеров разных классов. Приобретение отдельных деталей для восстановления работоспособности летательного аппарата в большинстве случаев обойдется дешевле покупки нового дрона.

Все запчасти для квадрокоптеров продаются с доставкой по Москве, а также отправляются в регионы. Забрать покупку можно в пункте самовывоза (для жителей столицы).

Гироскопы (Gyro), инерциальная навигация (IMU)

Цель датчиков на ПК определить ориентацию коптера в пространстве и отследить его движения. Микросхема с датчиками (IMU) содержит как гироскопы, так и акселерометры.

Самые часто используемые полетные режимы Betaflight — это, наверное, Acro (акро, или ручной режим) и Angle (самовыравнивание). В акро режиме используются только гироскопы, а в Angle и гироскопы, и акселерометры.

А т. большинство пилотов FPV дронов летают в Acro, то акселерометры часто просто отключаются в настройках Betaflight, это позволяет сэкономить вычислительные ресурсы. По этой же причине под инерциальной навигацией обычно подразумевают только гироскопы (gyro).

Наиболее популярные гироскопы, используемые в полётниках:

IMUСпособ подключения, шиныМакс. частота сэмплирования
MPU6000SPI, i2c8K
MPU6050i2c4K
MPU6500SPI, i2c32K
MPU9150*i2c4K
MPU9250*SPI, i2c32K
ICM20602SPI, i2c32K
ICM20608SPI, i2c32K
ICM20689SPI, i2c32K

* MPU9150 — это MPU6050 со встроенным магнитометром AK8975, а MPU9250 — это MPU6500 с тем же магнитометром.

flight-controller-fc-mpu-6000-6050-6500-gyro-accelerometer-7277106

Гироскопы и акселерометры на полетном контроллере

Что лучше высокая частота опроса или шум?

У IMU есть две основные характеристики: максимальная частота сэмплирования и насколько полученные данные будут зашумлены (механическими вибрациями и электрическими помехами).

В настоящее время очень часто используют микросхему MPU6000, которая поддерживает частоту опроса до 8k, и обладает (неоднократно проверено) хорошей устойчивостью к разного рода шумам и помехам. Главное стараться избегать MPU6500 и MPU9250, хотя у них больше рабочая частота, но и уровень шумов тоже значительно выше.

Учтите, что разные серии гироскопов ICM имеют разные характеристики. ICM20689 — один из худших вариантов, легко восприимчив к шуму, да и с надежностью проблемы. Если приходится выбирать из ICM, то берите модель 20602.

В последнее время появляется всё больше и больше ПК с гироскопами на отдельной плате с антивибрационной развязкой (кусок поролона, чтобы снизить вибрации от моторов).

holybro-kakute-f4-aio-flight-controller-fc-1-1024x768-4181960

Антивибрационное крепление гироскопов на ПК Kakute F4

Обновление (окт 2019). Начиная с версии Betaflight 4. 1 нет поддержки частоты 32кГц, так что если вы используете гироскопы ICM с Betaflight, то looptime будет не больше 8кГц.

Скорость работы гироскопов — это палка о двух концах: если питание чистое, и шумов нет, тогда серия ICM на 32k будет работать лучше, чем MPU6000. Однако, если регуляторы и моторы начнут генерировать помехи, а коптер вибрирует, тогда ICM хуже, чем MPU6000.

Несколько советов как крепить ПК с демпферами (антивибрационное крепление) и использовать конденсаторы для фильтрации помех по питанию.

I2c или SPI?

i2c и SPI — это названия шин для подключения гироскопов к процессору. Выбранная шина может ограничить частоты опроса гироскопов и ограничит looptime.

Лучше всего использовать SPI, т. она позволяет работать с бОльшими частотами, чем i2c, у которой лимит в 4k. Практически все современные ПК используют SPI.

Виды электродвигателей для квадрокоптеров

Современные коптеры комплектуются электромоторами двух типов:

  • коллекторными,
  • бесколлекторными.

Первый вариант используется в недорогих летательных аппаратах. Такие двигатели для квадрокоптеров обладают небольшим собственным весом. Из их недостатков стоит отметить невысокую мощность и нагревание в процессе работы. Последнее приводит к быстрому расходованию ресурса мотора. Впрочем, многие предпочитают именно коллекторные агрегаты, потому что они стоят от 100 руб. и могут использоваться фактически как расходный материал.

Для квадрокоптеров средней и высокой ценовой категории используются бесколлекторные двигатели. Их особенностью является отсутствие трущихся деталей (щеток), с помощью которых в традиционных электромоторах передается ток. Это делает агрегаты значительно более «живучими».

Двигатель для квадрокоптера подбирается так, чтобы по мощности и рабочему току он соответствовал значениям, допустимым для контроллеров. Обязательно учитываются параметры пропеллеров, с которыми будет работать мотор. Кроме этого, нужно обратить внимание на крепление электродвигателя для квадрокоптера. За этим надо следить при покупке универсального варианта, то есть не рассчитанного на конкретную модель дрона. При прочих равных условиях выбирать всегда надо мотор с наименьшим весом. Это нужно для увеличения времени полета беспилотника.

Расположение элементов

Расположение контактов и разъемов влияет на простоту сборки.

Многие пилоты смотрят только на технические характеристики полетных контроллеров и упускают важность дизайна/компоновки элементов.

Хорошие пример — CLRacing F7 и Kakute F7. Два отличных полётника, с уверенностью могу их порекомендовать, но глядя только на компоновку скажу, что CLRacing F7 однозначно выигрывает, все контактные площадки расположены по краям платы и сгруппированы по выполняемым функциям. Контакты на Kakute скучкованы, в результате легко получить комок проводов.

cl-racing-f7-flight-controller-fc-top-1024x768-9092788

Полетный контроллер CL Racing F7

kakute-f7-flight-controller-top-1024x768-5510235

Полетные контроллер Kakute F7

Это дело вкуса, а он у всех разный.

Прочие функции

Данные черного ящика (англ

Есть два способа записать и сохранить данные черного ящика: на чип флэш-памяти, установленный на плате ПК или на MicroSD карточку, вставленную в слот.

Чип памяти дешевле, но как правило он имеет небольшую ёмкость и хранит относительно немного данных. Обычно 10 — 20 минут полетного времени (в зависимости от частоты запрашиваемых данных). Кроме того, загрузка данных с этого чипа идет довольно медленно, может уйти до 5 минут времени на загрузку лога длиной всего 1 минуту.

ПК со встроенным слотом для MicroSD карточек, позволяют хранить данные неделями, без необходимости очистки свободного места. Кроме того, чтение логов очень быстрое.

Логи черного ящика больше нужны опытным пилотам, для диагностики почти незаметных проблем с летными характеристиками; и для гонщиков, старающихся выжать всё возможное из своего коптера. Для обычных хоббийщиков он, возможно, и не нужен.

Кстати, есть еще третий вариант — можно купить внешний логгер (Open Logger) со слотом для microSD и подключить его через свободный UART к ПК.

Типы разъемов

Три основных типа разъемов на полетных контроллерах:

  • Пластиковые разъемы типа JST
  • Контактные площадки («пятаки») для пайки проводов
  • Сквозные отверстия

Пластиковые разъемы менее надежны, но при этом позволяют быстро отключать/подключать кабели. Контактные площадки более крепкие, но есть риск их перегреть при пайке, и тогда они отслоятся от платы. Наиболее универсальный вариант — сквозные отверстия: можно припаять провода или штыревые разъемы.

fc-flight-controller-solder-pads-through-holes-plastic-jst-connector-8871887

  • Совет: как выпаять штыревые разъемы (англ)
  • Совет: как восстановить отслоившиеся контактные площадки (англ)

BEC (стабилизатор напряжения)

В большинстве полётников уже есть стаб на 5 вольт. В некоторых есть и на 9, и 12 вольт (или на какое-нибудь другое напряжение). Эти стабилизаторы часто называют BEC (battery eliminator circuit).

Несмотря на то, что значительную часть FPV оборудования (камеры, видеопередатчики) можно подключать напрямую к литиевому аккумулятору, я считаю, что изображение будет лучше, если питать их через стабилизатор.

Подробнее про подключение FPV оборудования для минимизации помех (англ).

Управление камерой

Позволяет настраивать курсовую камеру прямо с аппы и через Betaflight OSD.

Кнопка boot (активация загрузчика)

Нажатая кнопка boot при подаче питания переводит процессор полетного контроллера в режим загрузчика (bootloader mode). В этом режиме можно обновить прошивку, даже если стандартные программы этого сделать не могут.

Подробнее про кнопку загрузчика (boot button)

У многих ПК есть два контакта которые нужно закорачивать для этой цели. Но гораздо приятнее, когда стоит кнопка.

Слева кнопка загрузчика, справа — контакты для этой же цели

Анатомия

Типичный регулятор скорости состоит вот из этих компонентов:

  • Микроконтроллер
  • Драйверы ключей
  • Силовые транзисторы (ключи, MOSFET)
  • LDO (стабилизатор питания микроконтроллера)
  • Куча конденсаторов (фильтры)
  • Опционально: датчик тока
  • Опционально: светодиоды

esc-anatomy-components-fpv-racing-drone-ru-1024x698-4920150

Регуляторы 4-в-1 — это, как правило, 4 одинаковые схемы на одной плате.

4in1-esc-anatomy-components-fpv-racing-drone-ru-1024x875-9171278

LDO (стабилизатор напряжения)

Этот стабилизатор снижает напряжение аккумулятора, служит для питания микроконтроллера и других компонентов регулятора (это не BEC, прим. перев).

Это мозг регулятора, работает под управлением прошивки, например BLHeli.

Драйверы ключей (gate drivers)

Нужны для управления мощными ключевыми транзисторами, и оказывают заметное влияние на характеристики. Подключаются к затвору (gate) мосфетов, поэтому по английский и называются gate drivers.

В старых и дешевых регуляторах вместо драйверов использовались простые транзисторы. Поэтому их характеристики и возможности по торможению были хуже.

Вместо того, чтобы использовать три отдельных драйвера для трех фаз мотора, в современных регуляторах с BLHeli_32 используется чип FD6288. Это сразу три драйвера в одном чипе.

Силовые транзисторы (MOSFET)

Или ключи, они как выключатели, только включаются и выключаются тысячи раз в секунду, собственно, это и есть управление мотором.

Размер и вес

Как правило размер и вес регуляторов пропорционален максимально допустимому току.

Регуляторы, разработанные для мини-квадриков имеют достаточно стандартные размеры и вес около 4-6 грамм. Всё сложнее и сложнее сделать регули ещё меньше и легче без ухудшения характеристик. Для гонок обычно стараются сделать коптер как можно более легким, но если вы хотите облегчить коптер, то лучше обратить внимание на что-то ещё, а не на регуляторы.

Мелкие регули быстрее нагреваются, и бывает довольно сложно их охладить, поэтому ставя очень мелкие регуляторы старайтесь подумать об охлаждении.

esc-sizes-dimension-comparison-1024x629-5397940

Бренды

Производители популярных и качественных регуляторов скорости для гоночных дронов (по алфавиту):

Извиняюсь, если пропустил кого-то, дополните список в комментариях.

Оцените статью
WordPress › Ошибка

На сайте возникла критическая ошибка.

Узнайте больше про решение проблем с WordPress.