- Гребные винты для лодочных моторов «Ямаха»
- Оригинальные гребные винты Yamaha
- Типы
- Серии, отличные от других
- Как читать обозначения винтов Yamaha
- Сторонние производители гребных винтов для Ямахи
- Что надо знать о гребном винте?
- Гребной винт-мультипитч
- Кольцевая профилированная насадка
- Формула изобретения
- Лодочные моторы «Ветерок»
- Двигатель
- Запчасти к лодочным моторам Ветерок
- ОАО «Ульяновский моторный завод»
- Лодочные моторы Ветерок-8
- Лодочные моторы Ветерок-8М
- Принцип работы двигателя
- Основные технические данные
Гребные винты для лодочных моторов «Ямаха»
Одна из «вечнозелёных» тем в водномоторной среде — выбор гребного винта. Сложнее подобрать для конкретного комплекта (лодка, двигатель, условия эксплуатации) оптимальную модель, нежели определить, винт какого производителя предпочесть. Серийные фирменные «Ямаха» или модели сторонних компаний?
Оригинальные гребные винты Yamaha
Крупнейший производитель лодочных моторов и винтов имеет огромный опыт работы. За эти десятилетия накоплены собственные разработки, обеспечивающие заявленные характеристики: высокая скорость или наибольшая тяговая сила, в зависимости от типа движителя.
Типы
«Ямаха» традиционно предлагает три разновидности винтов для лодочных моторов:
- Стандартные. Универсальные; поставляются в комплекте с двигателем, на который рассчитаны. Представлены моделями из алюминия и нержавеющей стали. Широкая линейка для моторов от 2 до 250 л.с.
- Скоростные — разработаны для достижения значительной скорости и работы на высоких оборотах.
- Грузовые: при незначительной потере скорости способствуют увеличению тяги.
Серии, отличные от других
Стандартные, скоростные и грузовые «пропеллеры» есть у всех производителей силовых установок. Оригинальные разработки Yamaha отличают её предложения от конкурентов. Обновленная система SDS с увеличенным до 19° углом демпфирования ещё эффективнее амортизирует при переключении передач, уменьшает ударные нагрузки на шестерни редуктора и снижает шум.
Полированные нержавеющие винты серии Reliance (SDS) предназначены для стандартных подвесников от 150 «лошадей» и мощнее.
Серия Talon (SDS) сконструирована для различных условий эксплуатации, конструкция также оснащена демпфером. Эти винты из стали и алюминия адаптированы к широкому списку моделей подвесных моторов.
Новая линейка топовых винтов серии Saltwater из нержавеющей стали представлена несколькими разновидностями моделей: Series XL / XL4 /HS4/ II.
Стальные Saltwater II с системой демпфирования переключения передач (SDS) разработаны специально для морской эксплуатации мощных моторов в 150–300 л. Их отличают большой диаметр, увеличенный загиб кромок лопастей и большой угол наклона лопастей. Это делает винт устойчивым к проявлениям кавитации и обеспечивает экономное расходование топлива при работе двигателя на средних оборотах.
Saltwater HS4 также выполнены из нержавеющей стали и оснащены SDS. Четырехлопастные модели обладают лучшей тягой, нежели трёхлопастные. За счёт этого Saltwater HS4 обеспечивает стабильность и большее ускорение на неспокойной воде. Но максимальная скорость движения немного ниже, чем при использовании пропеллера с тремя лопастями. Данная серия устанавливается на ПЛМ с компоновкой V-6 мощностью 150–300 лошадиных сил. Варианты с левым и правым направлением вращения выпускаются для сдвоенной установки.
Полированные пропеллеры серии Saltwater XL разработаны для крупных морских судов с моторами V-8 в 350 л. , а Saltwater XL4 отличаются наличием четырёх лопастей. Данные винты также оснащены SDS. XL обеспечивает высокую тяговую мощность, XL4 — быстро выводит круизные суда на глиссирование.
Специализированная серия VMAX для мощных подвесников SHO от 150 до 275 л. обеспечивает превосходные ходовые качества лёгким судам.
Винты Performance с отверстиями для вывода выхлопных газов обеспечивают быстрое увеличение числа оборотов мотора благодаря прогрессивному шагу и увеличенному интерцептору. Ставятся на ПЛМ 50-130 от 50 до 130 л.
Линию High Performance также отличает прогрессивный шаг, увеличенный загиб кромок лопастей, а также ступица малого диаметра с системой выпуска отработавших газов. Это гребные винты для двигателей Ямаха мощностью 60–200 лошадиных сил.
Как читать обозначения винтов Yamaha
Символы и цифры, обозначенные на фирменной упаковке и самих изделиях, ориентируют покупателя в размерах винта, количестве лопастей, диаметре, величине шага в дюймах и иногда дополнительной информации (например, направлении вращения). Маркировка наносится на ступицу или лопасти.
Расшифровываем типоразмеры: 3×7,1/4x4R A.
3 в начале — количество лопастей, 7,1/4 — диаметр (в дюймах), 4 — шаг (в дюймах), R (right) — правого вращения. Литера в конце маркировки обозначает тип посадки на вал (количество шлицов). В данном случае буква «А» означает шпоночную посадку. Можно встретить следующие варианты: B, BS, BA — 9 шлицов; N — 7, R или J — 8; А — 10, G — 13; K, KL, M/T, ML/TL — 15, X, XL — 17.
Сторонние производители гребных винтов для Ямахи
Производство гребных винтов стало отдельным бизнесом с развитием рынка лодочных моторов. Лидеры выпускают универсальные модели для двигателей разных производителей. Стоимость изделий ниже благодаря снижению затрат при массовом производстве.
Проверенные бренды: Solas, E. Chance, Marine Rocket, BaekSan — предлагают качественные винты для ПЛМ «Ямаха» по более низкой цене.
Тайваньская компания Solas лидирует на рынке производителей винтов. Её продукция подходит для установки не только на «Ямаху», но и на большинство известных моделей лодочных моторов (Evinrude, Force, Honda, Johnson, Mercury/Mariner/Mercruiser, Tohatsu/Nissan, Suzuki).
Solas предлагает два типа винтов:
- С запрессованной втулкой-демпфером (алюминиевые: серии Amita 3, Amita 4; нержавеющая сталь с высоким содержанием никеля и хрома: Titan 3, Titan 3, Lexor, Saturn, New Saturn, Scorpion).
- Со сменной промежуточной втулкой из каучука (серия Rubex), что позволяет иметь два или более сменных винтов с разными характеристиками.
В пользу выбора продукции Solas говорят не только хорошие отзывы пользователей, но и позиция ведущих компаний, использующих винты этого бренда. «Хонда» и «Тохатсу» устанавливают гребные винты на свои двигатели. Большинство производителей рекомендуют эти «пропеллеры» для подвесных моторов и для «стационаров».
Что надо знать о гребном винте?
Как работает гребной винт? Гребной винт (рисунок 1) преобразует вращение вала двигателя
в упор — силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей,
обращенных вперед — в сторону движения судна (засасывающих), создается разрежение, а на обращенных
назад (нагнетающих) — повышенное давление воды. В результате разности давлений на лопастях возникает
сила Y (ее называют подъемной). Разложив силу на составляющие — одну, направленную в сторону движения
судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу Т,
образующую крутящий момент, который преодолевается двигателем.
Рисунок 1. Схема сил и скоростей на лопасти винта (правого вращения)
Упор в большой степени зависит от угла атаки α профиля лопасти. Оптимальное значение α, для быстроходных
катерных винтов 4-8°. Если α больше оптимальной величины, то мощность двигателя непроизводительно затрачивается
на преодоление большого крутящего момента; если же угол атаки мал, подъемная сила и, следовательно, упор Р будут
невелики, мощность двигателя окажется недоиспользованной.
На схеме, иллюстрирующей характер взаимодействия лопасти и воды, α можно представить как угол между направлением
вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован
геометрическим сложением векторов скорости поступательного перемещения va винта вместе с судном и скорости
вращения vr, т. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.
Винтовая поверхность лопасти. На рисунке 1 показаны силы и скорости, действующие в каком-то одном
определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Окружная скорость вращения vr зависит от радиуса, на котором сечение
расположено (vr — 2πrn, где n — частота вращения винта, об/с). Скорость же поступательного движения
винта va остается постоянной для любого сечения лопасти. Таким образом, чей больше r, т. чем ближе
расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость vr, а следовательно,
и суммарная скорость W.
Так как сторона va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления
сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы α сохранял
оптимальную неличину, т. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность
с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один
полный оборот винта.
Представить сложную винтовую поверхность лопасти помогает рисунок 2. Лопасть при работе винта как бы скользит по
направляющим угольникам, имеющим на каждом радиусе разную длину основания, по одинаковую высоту — шаг Н, и поднимается
за один оборот на величину Н. Произведение же шага на частоту вращения (H*n) представляет собой теоретическую
скорость перемещения винта вдоль оси.
Рисунок 2. Винтовая поверхность лопасти (а) и шаговые угольники (б)
Скорость судна, скорость винта и скольжение. При движении корпус судна увлекает за собой воду,
создавая попутный поток, поэтому действительная скорость встречи винта с водой va всегда
несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница
невелика — всего 2-5%, так как их корпус скользит по воде и почти не «тянет» ее за собой. У катеров, идущих со
средней скоростью хода эта разница составляет 5-8%, а у тихоходных водоизменшющих глубокосидящих катеров
достигает 15-20%. Сравним теперь теоретическую скорость винта H*n со скоростью его фактического
перемещения va относительно потока воды (рисунок 3). Пусть это будет «Казанка», идущая под
мотором «Вихрь» со скоростью 42 км/ч = (11,7 м/с). Скорость натекания воды да винт окажется на 5% меньше:
H*n-va=(1-0. 05)*11. 7=11. 1м/с
Гребной винт на «Вихре» имеет шаг Н=0. 3 м и частоту вращения n=2800/60=46. 7 об/с. Теоретическая скорость винта:
H*n=0. 3*46. 7=14 м/с.
Таким образом, мы получаем разность
H*n-va=14-11. 1=2. 9м/с.
Эта величина, называемая скольжением, и обуславливает работу лопасти винта под углом
атаки α к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах
называется относительным скольжением. В нашем примере оно равно
Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15%) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных
мотолодок и катеров скольжение достигает 15-25%, у тяжелых водоизмещающих катеров 20-40%, а у парусных яхт,
имеющих вспомогательный двигатель, 50-70%.
Рисунок 3. Соотношение скорости лодки и осевой скорости винта.
Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД,
т. отношения полезно используемой мощности к затрачиваемой мощности двигателя. Полезная мощность или ежесекундное
количество работы, используемой непосредственно для движения судна вперед, равно произведению сопротивления
воды R движению судна на его скорость V (Nп=RV кгсм/с).
Мощность, затрачиваемую на вращение гребного винта, можно выразить в виде зависимости Nз от крутящего
момента М и частоты вращения n
Nз=2π*n*M кгсм/с.
Следовательно, КПД можно вычислить следующим образом:
В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w:
va=V(1-w) м/с.
Значения w нетрудно определить по данным, приведенным выше.
Таким образом, полезная мощность с учетом взаимовлияния корпуса и винта равна
а общий пропульсивный КПД комплекса судно-двигатель-гребной винт вычисляется по формуле:
Здесь ηp — КПД винта; ηk — коэффициент влияния корпуса;
ηM — КПД валопровода и реверс-редукторной передачи.
Максимальная величина КПД гребного винта может достигать 70-80%, однако на практике довольно трудно выбрать
оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых
судах КПД реальных винтов может оказаться много ниже, составлять всего 45%.
Максимальной эффективности гребной винт достигает при относительном скольжении 10-30%. При увеличении скольжения КПД быстро падает; при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.
Коэффициент влияния корпуса нередко оказывается больше единицы (1. 1-1. 15), а потери в валопроводе оцениваются
величиной ηM=0. 9÷0.
Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать,
лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными
диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму
лопастей. Для предварительного определения диаметра винта можно воспользоваться формулой
где N — мощность, подводимая к винту, с учетом потерь в редукторе и валопроводе, л. ;
n — частота вращения гребного вала, об/с; va — скорость встречи винта с водой,
определенная с учетом коэффициента попутного потока w.
Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов,
обычно увеличивают примерно на 5% с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности
с двигателем при последующих испытаниях судна. Для «облегчения» винта его постепенно подрезают по диаметру
до получения номинальных оборотов двигателя при расчетной скорости.
Шаг винта можно ориентировочно определить, зная величину относительного скольжения s для данного типа судна
и ожидаемую скорость лодки:
Оптимальная величина скольжения для винтов, имеющих шаговое отношение H/D<1. 2 составляет s=0. 14÷0. 16;
для винтов имеющих H/D>1. 2, s=0. 12÷0. При выборе шагового отношения H/D можно руководствоваться следующими
рекомендациями. Для легких быстроходных лодок требуются винты с большим шагом или шаговым отношением H/D, для тяжелых
и тихоходных — с меньшим. При обычно применяемых двигателях с номинальной частотой вращения 1500-5000 об/мин оптимальное
шаговое отношение H/D составляет: для гоночных мотолодок и глиссеров — 0. 9÷1. 5; легких прогулочных
катеров — 0. 8÷1. 2; водоизмещающих катеров — 0. 6÷3-1. 0 и очень тяжелых тихоходных
катеров — 0,55÷0. Следует иметь в виду, что эта значения справедливы, если гребной вал делает
примерно 1000 об/мин из расчета на каждые 15 км/ч скорости лодки; при иной частоте вращения вала необходимо
применять редуктор.
Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых
зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода
судна.
Каждый двигатель имеет свою так называемую внешнюю характеристику — зависимость снимаемой с вала мощности
от частоты вращения коленчатого вала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного
мотора «Вихрь», например, показана на рисунке 4 (кривая 1). Максимум мощности в 21. 5 л. двигатель развивает
при 5000 об/мин.
Рисунок 4. Внешняя и винтовая характеристики мотора «Вихрь».
Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора,
показана на рисунке 4 не одной, а тремя кривыми — винтовыми характеристиками 2, З и 4, каждая из
которых соответствует определенному гребному винту, т. винту определенного шага и диаметра.
При увеличении и шага, и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком
большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном
валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке A. Это означает,
что двигатель уже достиг предельного — максимального значения крутящего момента и не в состоянии проворачивать гребной
винт с большой частотой вращения, т. не развивает номинальную частоту вращения и соответствующую ей номинальную
мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. мощности вместо 22 л. Такой гребной винт называется гидродинамически тяжелым.
Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому
двнгатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не
полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть,
что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт
называется гидродинамически легким.
Для каждого конкретного сочетания судна и двигателя существует оптимальный гребной винт. Для рассматриваемого примера такой оптимальный винт имеет характеристику 3, которая пересекается с внешней
характеристикой двигателя в точке В, соответствующей его максимальной мощности.
Рисунок 5 иллюстрирует важность правильного подбора винта на примере мотолодки «Крым» с подвесным мотором «Вихрь». При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 чел. на борту развивает скорость 37 км/ч. С полной нагрузкой 4 чел. скорость лодки снижается до 22 км/ч. При замене винта другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Оптимальные же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1. 0 (шаг и диаметр
равны 240 мм): максимальная скорость повышается до 40-42 км/ч, скорость с полной нагрузкой — до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага. Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути,
то при установке винта с шагом 240 мм расход горючего составит 237 г/км.
Рисунок 5. Зависимость скорости мотолодки «Крым» от нагрузки и шага гребного винта
мотора «Вихрь» мощностью 14. 8 кВт (20 л
На следующем рисунке представлен теоретический чертеж для изготовления «грузовых» гребных винтов для моторов
семейства «Вихрь» с шагом 240 и 264 мм. Эти винты имеют саблевидные лопасти со значительным наклоном к оси винта. Профиль поперечного сечения лопасти — переменный. У концов лопастей использован сегментный профиль,
к ступице он постепенно переходит в авиационный, Для повышения КПД шаг винтов принят переменным по
радиусу (данные для построения шаговых угольников приведены на рисунке 6 и в таблице 1.
Рисунок 6. Построение шаговых угольников (а) и кривые изменения кромчатого шага лопасти (б).
У подвесных моторов изменение шага гребного винта — практически единственная возможность согласовать работу
винта с двигателем, так как размеры корпуса редуктора ограничивают максимальный диаметр винта, который может
быть установлен на моторе. В некоторой степени винт можно «облегчить», если его подрезать по диаметру, однако
оптимальным вариантом является применение сменных винтов с различным шаговым отношением.
Численные рекомендации для наиболее популярных моторов мощностью 14-18 кВт (20-25 л. ) могут быть следующие. Штатные винты, имеющие H=280÷300 мм, дают оптимальные результаты на сравнительно плоскодонных лодках с массой
корпуса до 150 кг и нагрузкой 1-2 чел. На еще более легкой лодке массой до 100 кг можно получить прирост скорости
за счет увеличения H на 8-12%.
На более тяжелых глиссирующих корпусах, на лодках, имеющих большую килеватость днища и при большой
нагрузке (4-5 чел. ), шаг винта может быть уменьшен на 10-15 % (до 240-220 мм), но использовать такой винт при поездке
без пассажиров с малой нагрузкой не рекомендуется: двигатель будет «перекручивать обороты» и быстро выйдет из строя.
При установке подвесного мотора на тихоходной водоизмещающей шлюпке рекомендуется применять трех- и четырех
лопастные винты с соотношением H/D не менее 0. 7; при этом ширину лопасти и профиль ее поперечного сечения
сохраняют такими же, как и на штатном винте мотора.
При замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение
должно быть не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.
Кавитация и особенности геометрии гребных винтов малых судов. Высокие скорости движения
мотолодок и катеров и частота вращения винтов становятся причиной кавитации — вскипания воды и образований
в области разрежения на засасывающей стороне лопасти. В начальной стадии кавитации эти пузырьки невелики и на работе
винта практически не сказываются. Однако когда эти пузырьки лопаются, создаются огромные местные давления,
отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения
могут быть настолько значительными, что эффективность винта снизится.
При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость — каверна, захватывает всю
лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового
сопротивления и искажения формы лопастей.
Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти,
несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, иа корпус
передается вибрация, лодка движется скачками.
Степень разрежения на лопасти, а следовательно, и момент наступления кавитации зависят прежде всего от скорости
потока, набегающего на лопасть. Напомним, что эта скорость является геометрической суммой окружной
скорости vr=π*D*n к поступательной va. Замечено, что на катерных гребных винтах кавитация
вступает во вторую стадию, когда окружная скорость на конце лопасти достигает значения 3500 м/мин. Это означает, например, что гребной винт диаметром 300 мм будет иметь при этом частоту вращения
а винт диаметром 0. 4 м — около 2800 об/мин.
Момент наступления кавитации зависит не только от частоты вращения, но и от ряда других параметров. Так, чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт,
тем при меньшей частоте вращения, т. раньше наступает кавитация. Появлению кавитации способствует также большой угол
наклона гребного вала, дефекты лопастей — изгиб, некачественная поверхность.
В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении
принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе,
проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А,
а ее отношение к площади Ad сплошного диска такого же, как винт, диаметра, т. A/Ad. На винтах заводского
изготовления величина дискового отношения выбита на ступице.
Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0. 3-0. У сильно нагруженных винтов на быстроходных катерах с мощными высокосборотнымн двигателями A/Ad увеличивается
до 0. 6-1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью,
например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире,
чем увеличить их толщину.
Гребные винты катеров имеют обычно большую частоту вращения, поэтому вследствие больших центробежных скоростей
происходит перетекание воды по лопастям в радиальном направлении, что отрицательно сказывается на КПД винта. Для уменьшения этого эффекта лопастям придают значительный наклон в корму — от 10 до 15°.
В большинстве случаев лопастям винтов придается небольшая саблевидность — линия середин сечений лопасти выполняется
криволинейной с выпуклостью, направленной по ходу вращения винта. Такие винты благодаря более плавному входу лопастей
в воду отличаются меньшей вибрацией лопастей, в меньшей степени подвержены кавитации и имеют повышенную прочность
входящих кромок.
Наибольшее распространение среди винтов малых судов получил сегментный плоско-выпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять
возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен
выпукло-вогнутый профиль («луночка»). Стрелка вогнутости профиля принимается равной около 2% хорды сечения,
а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта,
равном 0. 6R) принимается обычно в пределах t/b=0. 04÷0. Ординаты профилей лопастей некавитирующих винтов
приведены в таблице 2.
ПРИМЕЧАНИЕ: x/b — относительный абсциссы отвходящей кромки ГВ, % хорды сечения лопасти;
Yн — относительная ордината нагнетающей поверхности лопасти, % макс. стрелки вогнутости ƒ;
Yз — относительная ордината засасывающей поверхности лопасти, % макс. расчётной толщины профиля t
Для суперкавитнрующих винтов гоночных судов применяют клиновидный профиль с тупой выходящей кромкой.
Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении
весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых
судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо
нагруженным, и на парусно-моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет
значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения
его сопротивления при плавании под парусами.
Четырех- и пятилопастные винты применяют очень редко, в основном на крупных моторных яхтах для уменьшения шума и
вибрации корпуса.
Гребной винт лучше всего работает, когда его ось расположена горизонтально. У винта, установленного с наклоном и в
связи с этим обтекаемого «косым» потоком, коэффициент полезного действия всегда будет ниже; это падение КПД сказывается
при угле наклона гребного вала к горизонту больше 10°.
Гребной винт-мультипитч
Задачу согласования элементов гребного винта с сопротивлением мотолодки при изменении ее нагрузки помогает решить
винт изменяемого шага типа «мультипитч».
На рисунке представлена схема устройства такого винта, выпускаемого Черноморским судостроительным заводом. Ступица винта изготовлена из нержавеющей стали и коррозионно-стойкого алюминиевого сплава;
лопасти изготавливают литьем под давлением из полиамидных смол. Все три лопасти взаимозаменяемы и имеют на комле жестко
закрепленные пальцы 2, которые проходят в отверстия в торце носовой части ступицы 6 и входят в пазы поводка 4. При повороте лопасти вокруг ее оси происходит синхронный разворот всех лопастей в сторону увеличения или уменьшения
шага винта. На поводке нанесена шкала, причем среднее деление ее соответствует конструктивному шагу, равному 240 мм. Пределы изменения шага составляют 200-320 мм, дисковое отношение винта — 0.
Закрепление лопастей в выбранном положении осуществляется гайкой 3. Втулка 5 имеет внутренний диаметр,
равный диаметру гребного вала мотора «Вихрь». От осевого перемещения по втулке винт фиксируется гайкой 3 и
стопорным винтом 8.
Винт имеет диаметр 240 мм и массу не более 0. 71 кг (винт новой конструкции — целиком из полиамидных
смол — весит 0. 45 кг). Для изменения шага достаточно 3-5 мин, причем снимать винт с мотора не требуется,
так же как и специально подходить к берегу. Конструкция защищена авторским свидетельством №454146.
Совмещая в себе как бы несколько сменных гребных винтов разного шага, мультипитч не лишен недостатков. Например, КПД винта при всех значениях шага, кроме конструктивного, оказывается меньше КПД винтов фиксированного шага,
рассчитанных специально на эти промежуточные режимы. Это объясняется тем, что для изменения геометрического шага
винта (уменьшения или увеличения его) в мультипитче, как и в винте регулируемого шага, вся лопасть поворачивается на
какой-то угол. Так как этот угол постоянен для всей лопасти, значение геометрического шага на различных радиусах лопасти
изменяется не на одинаковую величину и распределение шага по радиусу лопасти искажается. Например, при повороте лопасти
в сторону уменьшения шага на постоянный угол шаг сечений у конца лопасти уменьшается в значительно большей степени,
чем у комля. При достаточно большом повороте лопасти концевые сечения даже могут получить отрицательный угол
атаки — создавать упор заднего хода при неизменном направлении вращения гребного вала. Кроме того, при развороте лопасти
профиль поперечного сечения ее уже не ложится на спрямленную винтовую линию, а приобретает S-образную форму, что также
приводит к искажению кромочного шага.
Тем не менее, возможность плавного изменения шага в зависимости от нагрузки лодки позволяет получить наиболее
оптимальный и экономичный режим работы подвесного мотора. При установке шага важно иметь возможность проконтролировать
частоту вращения коленчатого вала двигателя во избежание его перегрузки при чрезмерном уменьшении шага.
Кольцевая профилированная насадка
Кроме снижения частоты вращения гребного винта, заметный эффект в таких случаях дает применение кольцевой
направляющей насадки (рисунок 7), представляющей собой замкнутое кольцо с плоско-выпуклым профилем. Площадь входного
отверстия насадки больше, чем выходного; винт устанавливается в наиболее узком сечении и с минимальным зазором между
краем лопасти и внутренней поверхностью насадки; обычно зазор не превышает 0. 01 D винта. При работе винта засасываемый
им поток вследствие уменьшения проходного сечения насадки увеличивает скорость, которая в диске винта получает
максимальное значение. Благодаря этому уменьшается скольжение винта, повышается его поступь. Вследствие малого зазора
между краем лопасти и насадкой уменьшается перетекание воды через край, что также повышает КПД винта.
Рисунок 7. Кольцевая профилированная насадка: а — расположение гребного винта;
б — размеры и профиль насадки.
Небольшой дополнительный упор создается и на самой насадке, которая обтекается потоком воды подобно крылу. На каждом элементе насадки возникает подъемная сила, которая дает горизонтальную составляющую, направленную вперед. Сумма этих составляющих и образует дополнительный упор.
Очевидно, что применение комплекса винт-насадка сопровождается повышением пропульсивных качеств судна до тех пор,
пока потери мощности на преодоление сопротивления насадки не превысят увеличение упора винта, достигнутое с ее помощью. Для оценки эффективности насадки можно воспользоваться диаграммой, представленной на рисунке 8. По ней можно установить,
на сколько повысится ηн-КПД комплекса винт-насадка по сравнению с КПД η открытого винта. Кривые построены для оптимального диаметра винта в зависимости от коэффициента K’n,
вычисляемого по заданным значениям скорости, частоты вращения винта и мощности, подводимой к винту:
где va — скорость воды в диске винта с учетом попутного потока, м/с; n — частота вращения винта, об/с;
p — массовая плотность воды (102 кгс2/м4); Ne — мощность, подводимая к винту,
с учетом потерь в редукторе и валопроводе, л.
Рисунок 8. Увеличение КПД и изменение элементов гребного винта при установке насадки в зависимости
от величины коэффициента K’n
Подсчитав значение К’n, можно по графику, представленному на рисунке 8, найти относительную
поступь λ. и шаговое отношение винта H/D, а затем определить диаметр винта
и шаг для винта без насадки и с насадкой. Если речь идет об уже эксплуатируемом катере, то с помощью этого графика
можно сравнить существующий винт с элементами винта, имеющего оптимальный диаметр.
Благодаря применению насадки удается повысить скорость катера на 5-8% (и даже до 25% на тихоходной лодке с
двигателем, имеющим большую частоту вращения). При скоростях около 20 км/ч установка насадки нецелесообразна. На быстроходных лодках с увеличением скорости винт становится менее нагруженным, а сопротивление насадки возрастает.
Насадка является хорошей защитой гребного винта от повреждений, благодаря постоянному заполнению водой не
позволяет ему обнажаться при килевой качке. Иногда направляющие насадки выполняют поворачивающимися относительно
вертикальной оси, в результате отпадает необходимость устанавливать руль.
Применение насадок целесообразно и на подвесных моторах, устанавливаемых на тихоходных судах водоизмещающего типа. На 25-30-сильном подвесном моторе целесообразно использовать насадку на судне водоизмещением более 700 кг (например,
на катерах, переделанных из военно-морских ялов, и парусно-моторных яхтах). На моторах мощностью 8-12 л. насадка
полезна уже при водоизмещении более 400 кг.
Рекомендуемые размеры насадки и ее профили показаны на рисунке 7. Длина насадки принимается обычно в
пределах Lн (0. 50÷0. 70) D диаметра винта. Минимальный диаметр насадки (место, где устанавливается
гребной винт) располагается на расстоянии А=(0. 35÷0. 40) D от входящей кромки насадки. Наибольшая толщина
профиля δ=(0. 10÷0. 15) Lн.
Насадку можно выточить из предварительно согнутой в обечайку толстой алюминиевой полосы или выклеить ее из
стеклопластика на болване. Все поверхности насадки следует тщательно отполировать для снижения потерь на трение. На подвесном моторе насадку прикрепляют к антикавитационной плите, для чего снаружи насадки делают «лыску»,
образующую плоскость. Внизу кольцо крепят к шпоре мотора.
Справочник по катерам, лодкам и моторам. под редакцией Г. Новака
Формула изобретения
Гребной винт, содержащий ступицу с присоединенными к ней лопастями выпукло-вогнутого сечения, с рабочими поверхностями в виде спиралевидных участков и с углом наклона к нижним кромкам лопастей, отличающийся тем, что винтовая поверхность имеет полый усеченный конус, в котором находятся лопасти, профиль которых, равномерно по спирали закручиваясь на 180°, монотонно уменьшается по мере удаления от оси винта, имеет водозаборник и водозаборные лопатки.
Гребной винт по п. 1, отличающийся тем, что пространство между лопастями ограниченно, причем все лопасти находятся в закрытом корпусе винта и имеет разницу диаметров винта, где диаметр засасывающей поверхности винта на приеме больше чем диаметр на выбросе.
Лодочные моторы «Ветерок»
Лодочные моторы «Ветерок» построены по классической схеме с вертикальным расположением узлов. Каких-либо оригинальных технических новинок моторы «Ветерок» не содержат — все решения, которые применены на моторах «Ветерок» к моменту начала их проектирования уже были отработаны на советских и зарубежных моторах.
Двигатель
Двигатель — двухтактный двигатель двухцилиндровый с дефлекторной продувкой и всасыванием свежей смеси через автоматические лепестковые клапаны.
Рабочий объём двигателя мотора «Ветерок-8» составляет 173 см³, а для мотора «Ветерок-12» — 248 см³. Степень сжатия для двигателей моторов «Ветерок-8», «Ветерок-8Э», «Ветерок-12», «Ветерок-12Э» составляет 6, а для моторов «Ветерок-8М» — 7. Остов двигателя состоит из картера туннельного типа (не имеющего разъёма в плоскости оси вращения), крышки картера и блока цилиндров, соединённых винтами. Указанные детали обрабатываются на заводе совместно и могут заменяться только в комплекте. В отливке картера и блока цилиндров выполнены каналы для циркуляции охлаждающей воды.
Цилиндры имеют чугунные гильзы. Продувочные каналы выполнены в отливке картера и блока цилиндров. Продувочные и выхлопные окна круглой формы. В месте расположения продувочных окон блок цилиндров имеет полость, закрываемую съёмной крышкой (у модели «Ветерок-12» таких крышек две). К передней части картера крепится перегородка, на которую установлены автоматические впускные клапаны и впускной коллектор. Выхлопные окна выходят в коллектор, выполненный в виде прилива к блоку цилиндров, закрываемый крышкой. Коллектор охлаждается водой.
Блок цилиндров закрывается головкой цилиндров, закрепляемой к блоку на 10 шпильках. В головке цилиндров выполнены углубления, образующие (вместе со стенками цилиндров) камеры сгорания. Газовый промежуток в соединении блока и головки цилиндров уплотняется с помощью металлоасбестовой прокладки. В отливке головки цилиндров выполнены каналы для циркуляции охлаждающей воды.
Коленчатый вал стальной, цельный, имеет три коренных опоры: верхнюю, включающую в себя шариковый подшипник и игольчатый подшипник, установленные к крышке картера, среднюю — игольчатый подшипник в специальной обойме, имеющей лабиринтное уплотнение и нижнюю — шариковый подшипник, установленный в корпусе картера. Обойма средней опоры коленчатого вала вынимается из картера вместе с коленчатым валом, после чего разбирается (разъём в плоскости оси вращения) и снимается с вала. Верхний хвостовик коленчатого вала имеет конус для посадки маховика. Нижний хвостовик коленчатого вала имеет внутренние шлицы для соединения с вертикальным валом силовой передачи.
Шатуны имеют разъёмную нижнюю (соединяемую с коленчатым валом) головку и неразъёмную верхнюю. Подшипник нижней головки шатуна — игольчатый, без сепаратора. Подшипник верхней головки шатуна: до 1988 года — бронзово-графитовая втулка, с 1988 игольчатый подшипник с сепаратором. Поршни имеют по три компрессионных кольца. Особенностью моторов «Ветерок» является то, что замки компрессионных колец находятся на одной линии, что несколько увеличивает прорыв газов в картер. Головка поршня имеет специальный прилив-дефлектор, направляющий поток продувочной смеси к камере сгорания (дефлекторная продувка).
Поршневой палец плавающий, то есть имеющий скользящую посадку как в сопряжении с шатуном, так и в сопряжении с поршнем. От осевого перемещения палец фиксируется стопорными кольцами.
Зажигание рабочей смеси осуществляется от маховичного магнето (то есть маховик, оборудованный магнитами, является составной частью магнето) с контактным прерывателем на ранних моделях и с тиристорным бесконтактным коммутатором на более поздних моделях: «Ветерок-8Э», «Ветерок-8М», «Ветерок-12Э». На моделях с тиристорным коммутатором в магнето имеется катушка для питания электроэнергиейходовых огней лодки. Основание магнето выполнено поворотным. Это позволяет изменять угол опережения зажигания в процессе работы мотора. Изменение угла опережения зажигания осуществляется водителем лодки посредством румпеля или дистанционного управления. Управление углом опережения зажигания и дроссельной заслонкой карбюратора сблокированы.
Охлаждение двигателя — принудительное, забортной водой. Для этого в конструкции мотора предусмотрен насос-дозатор (помпа) коловратного типа с эластичной резиновой крыльчаткой.
Выпуск отработавших газов осуществляется через дейдвудную трубу в воду, в зону разрежения, создаваемую набегающим потоком. На выходе из двигателя выхлопные газы смешиваются с охлаждающей водой (система «мокрого выхлопа»), что предотвращает перегрев дейдвудной трубы.
Запуск двигателя ручным стартёром с вытяжным самоубирающимся шнуром. Пусковой механизм расположен в поддоне мотора. В случае поломки пускового механизма двигатель может быть запущен с помощью шнура, наматываемого на маховик.
Дейдвудная труба мотора (промежуточный корпус) связывает двигатель и редуктор. С помощью подвески с упругими элементами и струбциной мотор закрепляется на транце лодки. В дейдвудной трубе проходит вертикальный вал силовой передачи, трубка подачи охлаждающей воды и тяга управления муфтой сцепления. Подвеска моторов «Ветерок» поворотно-откидного типа, то есть обеспечивает возможность поворота мотора вокруг вертикальной оси (при управлении курсом лодки) и вокруг горизонтальной оси при ударе подводной части мотора о препятствие или для извлечения подводной части мотора из воды на стоянке. В откинутом положении мотор фиксируется автоматическим замком. Для опускания подводной части мотора в воду необходимо вручную открыть замок.
Подводная часть состоит из проставки (в которой находятся насос подачи охлаждающей воды в двигатель и муфта сцепления), редуктора и гребного винта.
Муфта сцепления кулачковая с ручным управлением. Соединяет вертикальный вал силовой передачи и вертикальный вал редуктора. Наличие муфты сцепления позволяет разобщать двигатель и редуктор при пуске. Редуктор моторов «Ветерок» конический одноступенчатый, не имеющий реверса. Ведущий вал-шестерня установлен вертикально на двух шариковых подшипниках. Ведомый горизонтальный (гребной) вал установлен на шариковых подшипниках в специальном стакане. Смазка редуктора осуществляется трансмиссионным маслом, заливаемым в его полость.
Гребной винт левого вращения фиксированного шага, на ранних моделях двухлопастной, с 70-х годов — трёхлопастной. В ступице гребного винта установлен резиновый демпфер. Передача вращения от выходного вала редуктора к винту — через срезной штифт, который является самым слабым звеном в силовой передаче от двигателя к редуктору. При ударе винта о подводное препятствие штифт переламывается (срезается) и предохраняет детали мотора от поломки. Для продолжения движения срезанный штифт необходимо заменить.
Управление курсом лодки осуществляется за счёт поворота мотора вокруг вертикальной оси с помощью румпеля.
Управление скоростью лодки осуществляется за счёт изменения режима работы двигателя, для чего на конце румпеля имеется рукоятка, связанная механической передачей с узлом изменения угла опережения зажигания и дроссельной заслонкой карбюратора. Управление муфтой сцепления осуществляется рычагом, расположенным справа (по ходу лодки) на промежуточном корпусе. Моторы, выпускаемые с середины 70-х годов допускают использование дистанционного управления тросового типа.
Запчасти к лодочным моторам Ветерок
Хорошая ремонтопригодность Ветерка ― это одно из главных преимуществ этого мотора. При столкновении с различными неисправностями, советуем обратить внимание на информацию ниже и остаться на этой странице, поскольку ассортимент наших запчастей поможет при ремонте и замене запчастей. Ремонт не требует специальных условий и мастерских, поэтому запчасти для лодочного мотора Ветерок можно спокойно купить и самостоятельно провести необходимые работы.
Штифт гребного винта должен быть запасной и всегда под рукой, потому как лодка просто не сдвинется с места даже при работающем моторе. У лодочного мотора Ветерок нестандартное крепление гребного винта, вследствие чего использовать винты зарубежного производства нет возможности. А левое вращение винта ограничивает выбор среди альтернативных отечественных. У нас вы всегда сможете купить гребной винт для мотора Ветерок 8 и 12. Мотор не запускается? Проверьте, возможно вышел из строя карбюратор, а при поломке электрода или изолятора свечи ― замените свечу. Еще одна причина ― нарушилось уплотнение в цилиндре из-за попадания воды. Если прокладка головки блока повреждена ― замените ее, а поверхности нужно зачистить для их уплотнения. Есть смысл провести замену сломанных впускных пластинчатых клапанов.
Не забывайте про такие необходимые комплектующие, которые так же нужно иметь про запас: прокладки картера и крышки картера, карбюратора, патрубка, головки, сальники, пружины сальника, поршневые кольца, крыльчатка, свечи зажигания. Акцентируем внимание, что исправная работа мотора, его долговечность напрямую зависят от соблюдения правил инструкции по эксплуатации, поэтому прежде чем начинать ремонт или эксплуатацию, ознакомьтесь с ней.
ОАО «Ульяновский моторный завод»
На сегодняшний день ОАО «Ульяновский моторный завод» – единственное предприятие в России, производящее лодочные моторы средней мощности. Лодочные моторы «Ветерок» производства «УМЗ» имеют мощность 8 л. , 9,9 л. , 12 л. В 2007 году планируется выпуск моторов мощностью 15 л. Моторы производятся разных модификаций: стандартные (для высоты транца лодки 380 мм) и с удлиненной подводной частью (для высоты транца лодки 510 мм). Подвесные лодочные моторы «Ветерок» отличаются экономичностью, малым весом, компактностью (свободно помещаются в багажнике легкового автомобиля), простотой обслуживания, доступной ценой.
«Ветерок» – наиболее подходящий двигатель для тяжелой рыбацкой лодки, а также легкой прогулочной лодки, надувной лодки пвх или «картопа». Он идеально подходит для отдыха на воде, рыболовства, охоты, для комплектации спасательных шлюпок, станет незаменимым помощником в хозяйстве, может применяться в качестве резервного двигателя на катерах и яхтах, для буксировки. «Ветерок» имеет массу преимуществ перед импортными аналогами. Кроме явного отличия цены, он экономичен в эксплуатации — для работы требуется низкооктановое топливо, а при необходимости ремонта у его владельца не возникнут проблемы с обеспечением запасными частями для лодочных моторов Ветерок 8 и 12.
Нами была проведена работа по реновации модельного ряда подвесных лодочных моторов «Ветерок». Применены новые технологии и современные материалы, в результате чего удалось значительно повысить качество выпускаемой продукции. Была разработана новая модель – «Ветерок-9,9», достижения, достигнутые при разработке нового мотора, удалось применить к серийным моделям.
Так, обеспечена бесперебойная работа и снижение оборотов начало искрообразования за счет применения электронной системы зажигания с импортными тиристорами. Установлена кнопка «СТОП». Применены шланги из материалов более высокого качества, установлен топливный фильтр для очистка рабочей смеси от примесей. На румпель управления применен резиновый амортизатор. Изменена конструкция и дизайн верхнего кожуха.
Лодочные моторы Ветерок-8
Подвесной лодочный мотор ВЕТЕРОК-8 предназначен для установки на лодки с высотой транца до 380 мм и может эксплуатироваться в любых водоемах глубиной не менее 500 мм.
Мотор оборудован системой бесконтактного электронного зажигания. Имеется вывод для подключения системы питания сигнальных огней лодки. Запуск мотора производится с помощью пускового механизма с самоубирающимся шнуром. Нижнее расположение пускового механизма уменьшает откидывание мотора при запуске. Управление лодкой и режимом работы двигателя производится посредством румпеля. Охлаждение мотора производится забортной водой при помощи водяной помпы. Для удобства эксплуатации мотор снабжен муфтой холостого хода, держателем мотора в откинутом положении и пружинной подвеской, уменьшающей передачу вибрации на лодку.
Топливный бак — переносный, его можно поместить в любом месте лодки. Объем топливного бака обеспечивает непрерывную работу мотора на максимальном режиме в течение 3 часов. В морском исполнении Ветеркок-8 может эксплуатироваться и в соленой воде.
Специалистами нашего предприятия была проведена работа по реновации модельного ряда подвесных лодочных моторов «Ветерок». Применены новые технологии и современные материалы, в результате чего удалось значительно повысить качество выпускаемой продукции. В частности, обеспечена бесперебойная работа, снижение оборотов начало искрообразования за счет применения электронной системы зажигания с импортными тиристорами. Установлена кнопка «СТОП». Применены шланги из материалов более высокого качества, стало возможным применение топлива с низким октановым числом и любого моторного масла для двухтактных двигателей за счет установки топливного фильтра. Установлен новый карбюратор К-493. На румпель управления применен резиновый амортизатор.
Тип двигателядвухтактный карбюраторный бензиновый
Мощность максимальная при частоте вращения коленчатого вала 5000 об/мин, кВт (л. )5,9 (8)
Число цилиндров2
Диаметр цилиндра, мм50
Ход поршня, мм44
Рабочий объем цилиндров, см3173
Степень сжатия (эффективная)7
Направление вращения маховика, смотря сверхупо часовой стрелке
Тяга на швартовах, Н (кгс)не менее 700 (70)
Система зажиганияОт маховичного магдино МБЭ-3 с выносными трансформаторами
КарбюраторК-49
Топливобензин автомобильный А-72 или А-76 ГОСТ 2084-77
Часовой расход топлива, кг/чне более 3,2
Емкость бака, л14
Передаточное отношение редуктора13:21
Смазка редукторамасло автомобильное трансмиссионное ТАп-15В ГОСТ 23652-79 или другие автомобильные трансмиссионные масла летние
Диаметр гребного винта Х шаг, мм190 Х 220
Масса мотора, кг24,5
Габаритные размеры мотора (с поднятым вверх румпелем), мм
высота1050
ширина350
длина500
Отзывы о моторе Семейство «Ветерков» существует уже несколько десятилетий, и по сей день его представители востребованы на рынке лодочной техники. Первые мото-часы эксплуатации двигателя могут огорчить низкой мощностью. Вернее, заявленные 8 «лошадок» никуда не деваются, но опытные пользователи отмечают недостаточность тяги, которой располагает лодочный мотор «Ветерок». Отзывы отмечают и частые поломки, засоры, а также неудобную посадку, из-за которой профилактические осмотры становятся обязательными едва ли не после каждого применения.
Но есть и плюсы, благодаря которым отечественный мотор и сохранил свою популярность, причем не только в России. Прежде всего, он отличается ремонтопригодностью. Это значит, что двигатель можно не просто ремонтировать, но делать это своими руками из стандартного набора общедоступных запчастей. То есть поломки частые, но и устраняются они легко, в то время как зарубежные четырехтактные конкуренты хоть и ломаются реже, но проблем с последующим ремонтом доставляют гораздо больше. В остальном же «Ветерок» показывает приличные результаты как на полном ходу, так и в троллинге. Например, мнения рыбаков о нем в большинстве положительные – среди подвесных моторных двигателей средней мощности непросто найти качественный и недорогой экземпляр, а «Ветерок» себя во многом оправдывает, несмотря на все минусы.
Лодочные моторы Ветерок-8М
Подвесной лодочный мотор “ВЕТЕРОК-8М” предназначен для установки на лодки с высотой транца до 380 мм и может эксплуатироваться в любых водоемах глубиной не менее 500 мм. Мотор оборудован системой бесконтактного электронного зажигания. Имеется вывод для подключения системы питания сигнальных огней лодки.
Общий вид мотора 1—защелка кожуха; 2—ручка воздушной заслонки карбюратора; 3—ручка пускового механизма; 4—рукоятка румпеля; 5—пробка сливная; 6—пробка заливная (контрольная); 7—упор; 8—держатель мотора в поднятом положении; 9—муфта бензошланга; 10—ручка переключения муфты холостого хода.
Запуск мотора производится с помощью пускового механизма с самоубирающимся шнуром. Нижнее расположение пускового механизма уменьшает откидывание мотора при запуске. Управление лодкой и режимом работы двигателя производится посредством румпеля. Охлаждение мотора производится забортной водой при помощи водяной помпы. ьДля удобства эксплуатации мотор снабжен муфтой холостого хода, держателем мотора в откинутом положении и пружинной подвеской, уменьшающей передачу вибрации на лодку.
Принцип работы двигателя
Двигатель работает по двухтактному циклу и имеет кривошипно-камерную дефлекторную продувку.
При двухтактном цикле процессы всасывания, сжатия, рабочего хода и выпуска совершаются за два хода поршня, то есть за один оборот коленчатого вала. При движении поршня вверх в полости картера под поршнем образуется разрежение, вследствие чего рабочая смесь из карбюратора при открытии впускных клапанов устремляется в полость картера (положение А). При движении поршня вниз, клапаны автоматически закрываются и происходит сжатие смеси в картере (положение Б).
Принципиальная схема работы и диаграмма газораспределения двигателя
При дальнейшем движении поршня вниз, после открытия выпускных и продувочных окон, сжатая в картере смесь по продувочным каналам направляется в цилиндр (положение Г). Происходит продувка цилиндра и заполнение его свежей смесью. Пройдя нижнюю мертвую точку, поршень начинает движение вверх. При этом некоторое время продолжается процесс продувки цилиндра. Как только поршень при движении вверх закроет продувочные и выпускные окна, начинается процесс сжатия в цилиндре (положение А).
В конце хода поршня сжатая в цилиндре смесь воспламеняется от запальной свечи. Начинается процесс сгорания смеси, а затем рабочий ход при котором поршень под давлением газов перемещается вниз (положение Б). При дальнейшем движении поршня вниз, с открытием выпускных окон, начинается выпуск отработанных газов (положение В). Давление газов в цилиндре резко падает и становится меньше, чем давление свежей смеси в полости картера. Вследствие этого при последующем открытии продувочных окон выпуск сопровождается продувкой цилиндра свежей смесью (положение Г). При каждом обороте коленчатого вала все эти процессы повторяются. Схема системы зажигания и освещения. 1—основание магдино; 2—катушки зажигания; 3—плата; 4—конденсаторы; 5—трансформаторы; 6—свечи зажигания; 7—наконечники; 8—лампа накаливания; 9—провод освещения; 10—катушка освещения; М-метка (риска) для установки угла опережения зажигания; В—винт ограничения поворота основания магдино; Г—гайка. Обозначение цвета проводов: Б—белый; Ж—желтый; 3—зеленый; К—красный; Кч—коричневый; С—синий; Ч—черный.
Основные технические данные
Тип двигателядвухтактный карбюраторный бензиновый
Мощность максимальная при частоте вращения коленчатого вала 5000 об/мин, кВт (л. )5,9 (8)
Число цилиндров2
Диаметр цилиндра, мм50
Ход поршня, мм44
Рабочий объем цилиндров, см3173
Степень сжатия (эффективная)7
Направление вращения маховика, смотря сверхупо часовой стрелке
Тяга на швартовах, Н (кгс)не менее 700 (70)
Система зажиганияОт маховичного магдино МБЭ-3 с выносными трансформаторами
Свеча зажиганияА11-3, ОСТ 37003081-87
Система освещения12В 30Вт
Зазор между электродами свечи, мм0. 85~1. 00
КарбюраторК-33Б
Топливо и маслобензин автомобильный А-72 или А-76 ГОСТ 2084-77 с добавлением
масла М-8В1 ГОСТ 10541-78 или масла МГД-14М ТУ 38. 101. 930-87
или масла М-12ТП ТУ 38. 401. 666-87. Часовой расход топлива, кг/ч. не более 3,2
Фазы газораспределения, град:
Выпуск140
Продувка110
Передаточное отношение редуктора13:21
Смазка редукторамасло автомобильное трансмиссионное ТАп-15В ГОСТ 23652-79 или другие автомобильные трансмиссионные масла летние
Параметры гребных винтовскоростного грузового
Диаметр гребных винтов, мм190 210
Шаг гребных винтов, мм202 160
Число лопастей3 3
Масса мотора, кг24,5
Габаритные размеры мотора (с поднятым вверх румпелем), мм
высота1050
ширина350
длина500