Принципы пилотирования самолета

Средства аварийного покидания и спасенияПравить

Самолёт, как сложное транспортное средство представляет определённую опасность. Как указывалось выше, в авиации безопасности полётов уделяется огромное внимание. Так, например, на любом действующем аэродроме при производстве полётов всегда имеется в дежурном режиме аварийно-спасательная команда с соответствующим оборудованием и оснащением. Любые полёты или одиночные вылеты без приведения в готовность средств АСС — запрещены на законодательном уровне.

Средства аварийного покидания и спасения (САПС) в общих чертах включают информационную составляющую о развитии аварийной ситуации (различные системы сигнализации и оповещения); аварийные выходы (люки, двери и вспомогательное оборудование); средства аварийного покидания в воздухе (спасательные парашюты и катапультируемые кресла для боевых, учебных, транспортных, спортивных и т. самолётов); средства защиты от неблагоприятных условий воздушной среды (экипировка и оборудование); средства выживания людей после покидания аварийного судна (возимый на борту набор специального оборудования и имущества, предназначенный для выживания после аварии).

На военных, военно-транспортных, спортивных и ряде других самолётов для экипажа предусмотрены спасательные парашюты, обычно укладываемые в чашку кресла (человек сидит на парашюте). На некоторых старых типах самолётов, возможно, ещё сохранились парашюты, одеваемые за спину. На всех сугубо пассажирских самолётах, независимо от того, принадлежит самолёт коммерческой авиакомпании или это военный лайнер минобороны, парашютов для экипажа не предусмотрено конструктивно. На высокоскоростных самолётах, где покидание аварийного самолёта сопряжено со значительными трудностями или просто физически невозможно, применяются технические средства в виде принудительно выбрасываемых из кабины (катапультируемых) кресел (см. основную статью: Катапультируемое кресло).

Аварийные люки и двери организуются по разному, в зависимости от назначения летательного аппарата и количества людей на борту. Нормальные выходы обычно делаются на левом борту ВС, аварийные выходы делают на обоих бортах, а также могут быть и на потолке — для аварийной посадки на воду.

Согласно требованиям «Единых норм летной годности гражданских транспортных самолетов» количество и размер аварийных выходов должно быть таким, чтобы при покидании самолёта, при открытых на 50% всех выходов, в том числе и основных, либо раздельно всех левых и всех правых выходов, эвакуация всех людей на борту осуществлялась за время не более 90 сек.

Для безопасного экстренного спуска пассажиров с высоко стоящего самолёта на борту имеются надувные трапы либо резинотканевые желобы.

Для выхода экипажа непосредственно из кабины используются сдвижные форточки у лётчиков, при этом для спуска на землю возле каждой форточки имеется спасательный фал или канат (на пассажирских и некоторых военных самолётах).

Снаружи фюзеляжа жёлтыми (допускается красными или белыми) уголками обозначаются зоны доступа в фюзеляж для наземной команды. В этой зоне часто присутствует надпись: «Рубить (вскрывать) здесь!» В оборудовании самолёта для этих же целей имеется топор.

Согласно действующим нормам, при полетах над водой продолжительностью свыше 30 минут на борту любого самолёта должны находится индивидуальные спасательные средства для всех членов экипажа и пассажиров. Для многих самолётов конструктивно предусматривается аварийная посадка на воду (во всяком случае, теоретически). Доже тяжелые боевые самолёты с плотной компоновкой имеют положительную плавучесть и могут некоторое время держаться на поверхности воды до затопления, а пассажирские лайнеры в этом плане ещё более стабильны. Поэтому в бортовом документе: «Памятке экипажу по действиям в особых случаях в полёте» детально расписаны действия экипажа при приводнении, а на самолёте имеется морское спасательное оборудование в виде спасательных жилетов, надувных лодок и надувных плотов с аварийным запасом выживания. Доже на больших военно-транспортных самолётах при полёте над морем предусмотрена загрузка в грузовую кабину спасательных плотов для всего состава десанта.

Для аварийной радиосвязи используются специальные аварийные радиостанции, например, отечественные Р-855 «Комар» или Р-861 «Актиния». Также самолеты могут быть доукомплектованы аварийными автоматическими радиобуями системы КОСПАС-SARSAT. Аварийные средства радиосвязи на самолете, как правило, находятся в пилотской кабине или в непосредственной близости к ней, также аварийные радиостанции штатно входят в укладку спасательных лодок, плотов, катапультных кресел.

Типовое оснащение спассредствами катапультного кресла включает: носимый аварийный запас НАЗ-7 с автоматическим радиомаяком «Комар-2М» и спасательным надувным плотом ПСН-1. Спасательный плот, автоматический радиомаяк и ранец НАЗ соединены 13-метровым фалом и уложены в свободную от кислородной системы кресла секцию профилированной крышки чашки сиденья; при раскрытии спасательного парашюта всё это имущество отделяется и повисает на фале.

также: Катапультируемое кресло, Парашют, Аварийный радиобуй, Надувной спасательный плот, Спасательный жилет, Носимый аварийный запас

Силовая установкаПравить

Двигатель НК-144 на постаменте у здания КАИ в г. Казани

Силовая установка (СУ) представляет собой совокупность авиационного двигателя с агрегатами, системами и устройствами, и служит для создания силы тяги, необходимой для полёта самолёта и обеспечения работоспособности на борту самолёта систем энергоснабжения и жизнеобеспечения.

Двигатель и его системы включают: двигатель(-и) (газотурбинный, поршневой) и его систему управления; систему запуска двигателя; топливную систему двигателя (топливная аппаратура); масляную систему двигателя; систему отбора воздуха от двигателя; систему выхлопа, в том числе устройство изменения направления вектора тяги.

Типы двигателей и их размещение на самолётеПравить

На самолёте могут быть установлены:

  • турбореактивные, в том числе двухконтурные турбореактивные двигатели с форсажной камерой или без неё. Эти двигатели обеспечивают большие дозвуковые, а также сверхзвуковые скорости полёта. Топливом служит авиационный керосин.
  • прямоточные воздушно-реактивные двигатели ПРВД, жидкостные ракетные двигатели ЖРД и другие типы двигателей, более применяемые в ракетной технике. Они обеспечивают высокие скорости полёта — 3000 и более км/ч.

Для авиационных двигателей наиболее важными параметрами являются: удельный вес, удельный расход топлива, удельная тяга и высотно-скоростные характеристики.

Самолёт Ту-154, пятый технический отсек. Проводка управления двигателями: тросы, тяги и шкивы, а также гермоввод тросов через гермошпангоут

Размещение двигателей продиктовано несколькими противоречивыми требованиями, а именно:

  • должна обеспечиваться надёжность двигателей и СУ в целом
  • СУ должна создавать минимальное лобовое сопротивление
  • тяга двигателей должна оказывать наименьшее влияние на характеристики устойчивости и управляемости самолёта
  • должно быть обеспечено удобство технического обслуживания двигателей и минимальные трудозатраты при монтажно-демонтажных работах, в том числе простота замены двигателя целиком
  • должно быть обеспечено предотвращение попадания посторонних предметов и частиц с поверхности грунта (покрытия аэродрома)
  • должна быть обеспечена пожарная безопасность

Правая мотогондола самолёта Ан-26, раскапотированный вспомогательный двигатель РУ19А-300

Таким образом, в настоящее время применяется несколько схем размещения двигателей, а именно:

  • в фюзеляже (манёвренные истребители МиГ, Су и др.)
  • в корневой части крыла («Вулкан», Ту-16)
  • в гондолах под крылом (В-52, Ан-24, Ил-76 и др.)
  • в хвостовой части фюзеляжа (Ту-134, Як-40, Ил-62, Ту-22)
  • над фюзеляжем или крылом (А-10, Ан-72)
  • снизу под фюзеляжем и крылом («Конкорд», Ту-160)

Ресурс авиационных двигателейПравить

Ресурс всех авиационных двигателей значительно (во много раз) меньше ресурса планера. Все самолёты проектируются на возможность замены двигателя на самолёте в эксплуатирующей организации и с минимальными трудозатратами.

Наименьший ресурс имеют двигатели беспилотных летательных аппаратов одноразового применения (ракет), который исчисляется считанными часами. На боевых самолётах ресурс двигателя до первого ремонта (на ремзаводе) обычно составляет несколько сотен часов. Наибольший ресурс у двигателей, специально разработанных для пассажирских самолётов.

Ресурс обычно считают в часах наработки или в циклах запуска, кроме того, учитывается календарное время эксплуатации (в годах).

  • РД-9БК — малоресурсный вариант двигателя РД-9 для беспилотных разведчиков и самолётов-мишеней Ла-17. Ресурс двигателя составляет 10 часов.
  • РД-500 (копия английского Rolls-Royce Derwent V) — турбореактивный двигатель, устанавливался на серийные самолёты Ла-15, Як-23, рад опытных самолётов, не пошедших в серию, а также на крылатую ракету КС-1. Ресурс этого двигателя составляет 100 часов.
  • Р15Б-300 — турбореактивный двигатель с форсажной камерой для самолёта МиГ-25. Назначенный ресурс 300 часов.
  • РД-3М-500 — турбореактивный двигатель для Ту-16 и Ту-104. Ресурс двигателя до первого ремонта 500 часов.
  • Д-30КП-2 — турбореактивный двигатель для транспортного самолёта Ил-76. Назначенный ресурс двигателя — 6500 часов.
  • Pratt & Whitney PW4000 — двухконтурный турбовентиляторный двигатель. В различных модификациях применяется на пассажирских самолётах: Airbus A300, Airbus A310, Boeing 747, Boeing 767, McDonnell Douglas MD-11. Ресурс двигателя до первого ремонта — 15000 циклов.

Фото справа — навесные агрегаты двигателя Д-36: 1 — топливный регулятор, 2 — подвод давления от компрессора, 3 — подвод давления на входе в двигатель, 4 — кран слива масла, 5 — маслобак, 6 — датчик уровня масла, 7 — блок топливных насосов, 8 — центробежный суфлёр, 9 — тросовая проводка управления, 10 — сигнализатор стружки, 11 — термостружкосигнализатор, 12 — маслоагрегат, 13 — электромагнит воздушного стартёра, 14 — воздушный стартёр, 15 — гидронасос, 16 — привод-генератор ГП-21, 17 — коробка приводов, 18 — труба сжатого воздуха.

Стопорение рулейПравить

Рычаг стопорения рулей (2) на левом боковом пульте Ту-134А

На стоянке, когда органы аэродинамического управления самолётом не функционируют и подвержены ветровой нагрузке, может потребоваться их стопорение (фиксация в определённом положении), дабы из-за перемещения под действием ветра не происходило износа и ударов в проводке управления. Поверхности с самотормозящимся приводом (с электрическим либо гидравлическим вращающимся приводом — наподобие стабилизатора Ту-22 или закрылков средних и тяжёлых самолётов, с необратимым гидроусилителем), как правило, дополнительного стопорения не требуют, поверхности же с несамотормозящимся приводом (безбустерные рули и элероны) нуждаются в стопорении. Стопориться рули могут как встроенными в конструкцию самолёта механизмами, так и устанавливаемыми на рулевые поверхности либо органы управления струбцинами.

Противопожарное оборудование самолётовПравить

Основная статья: Система пожаротушения (авиация), см. также: Система сигнализации пожара в авиации

В авиации мерам противопожарной защиты уделяется огромное значение, так как от этого зависят человеческие жизни. Кроме того, все объекты авиационной техники чрезвычайно дорогостоящие.

Противопожарное оборудование (ППО) — это совокупность оборудования пожарной сигнализации и системы пожаротушения на борту самолёта. Состоит из пассивных конструктивных элементов предупреждения и нераспространения пожара и активных средств пожаротушения: противопожарной системы и системы нейтрального газа.

В качестве пассивных элементов предупреждения пожара на самолёте используется множество конструктивных решений: теплоизоляция горячих отсеков или элементов конструкции матами с минеральной ватой, стекловолокном или асбестовыми тканями; создание отражающих поверхностей наклейкой фольги или напылением серебра; оплётка жгутов электропроводки фторопластовыми лентами и т. Часть шпангоутов в самолёте делаются сплошными и выступают в роли противопожарных перегородок, также в обязательном порядке разделяют перегородкой горячую часть двигателя (камеру сгорания и сопло) и холодную (ВНА и компрессор). В горячей зоне двигателей запрещается использование любых горючих материалов, более того, все основные агрегаты двигателя вынесены в холодную зону. В моторных отсеках предусматривается дренажная система для предотвращения скоплений топлива и рабочих жидкостей, опасных в пожарном отношении.

Все моторные отсеки и мотогондолы в полёте продуваются забортным воздухом. Если в каком-то случае невозможно обеспечить эффективное охлаждение, то вводятся эксплуатационные ограничения (например, часто ограничены по времени форсажные режимы).

В качестве активных средств используют систему сигнализации о пожаре и систему пожаротушения. На самолётах нередко создают значительный запас огнегасящего состава, который можно расходовать поэтапно, в так называемые очереди пожаротушения (первую, вторую, третью). В связи с высоким темпом развития пожара на самолёте система пожаротушения обычно имеет режим автоматического срабатывания первой очереди пожаротушения. В качестве огнегасящего состава уже достаточно давно используют фреон («хладон 114В2», химическая формула C2Br2F4).

Визуальные и приборные правила полетов

Предлагаю немного отвлечься и отправиться в прекрасный и далекий мир полетов. Сегодня мы разберем воздушное право, а именно два вида правил полетов (сами правила рассматривать пока не будем). Это одна из основ всего в авиации, без которой становится сложно объяснить множество других вещей, начиная от устройства воздушного пространства и заканчивая оборудованием самолета.

gd03js72gw_qo_i_hhojueafxdy-4476138

Взлёт

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 мая 2016 года; проверки требуют 43 правки.

У этого термина существуют и другие значения, см. Взлёт (фильм).

Взлёт — процесс перехода летательного аппарата или летающего представителя фауны (насекомого, птицы, рукокрылого) в состояние полёта. Взлёт возможен только в том случае, если подъёмная сила больше веса взлетающего объекта.

ГалереяПравить

  • Взлёт Boeing KC-135. Двигатели, работающие на взлётном режиме, выбрасывают много сажи
  • Взлёт (старт) ракеты-носителя «Союз».
  • Минометный старт ракеты «Днепр». Виден отделившийся поддон
  • Взлетающий лебедь-шипун. Хорошо виден след от разгона по поверхности воды

Взлёт представителей фауныПравить

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел. Вы можете помочь проекту, написав этот раздел. (31 августа 2016)

Взлёт рукокрылыхПравить

Взлёт лебедя с поверхности воды.

Стратегия взлёта может существенным образом отличаться, прежде всего в зависимости от размера птицы. Птицы небольшого размера требуют относительно небольшой или даже нулевой начальной скорости, которая генерируется за счёт прыжка.

Крупные птицы не способны взлетать с места, и им требуется начальная скорость для полёта. Чаще всего эта скорость достигается за счёт взлёта против ветра. В дополнение, часто птицы вынуждены делать пробежку по поверхности земли (например, журавль) или воды (лебедь, альбатросы).

Виды систем управленияПравить

  • Неавтоматические — перемещения органов управления выполняют люди посредством только мускульной энергии.
  • Полуавтоматические — система ручного управления подаёт сигналы на механические, гидравлические и электрические устройства, которые перемещают органы управления.
  • Автоматические — сигналы для механического перемещения органов управления формируются в автоматических устройствах (автопилот, система сопровождения цели).
  • Комбинированные — комбинация нескольких систем управления в одном летательном аппарате (например, пассажирский самолёт имеет как полуавтоматические, так и автоматические системы управления).

К командным рычагам управления относятся:

Механическая система управленияПравить

Система управления состоит из механизмов, рычагов, тяг, качалок, дающая возможность членам экипажа самолёта управлять рулями, элеронами и различными агрегатами самолёта. В управление самолётом входят: командные рычаги; проводка; органы управления (аэродинамические рули самолёта); иногда — гидроусилители (бустеры). В проводку управления входят: тросы; тяги; качалки; рычаги на рулях и всех управляемых агрегатах, кинематические механизмы (нелинейные, дифференциальные).

  • Мягкая проводка управления — связь между командными рычагами и рулями самолёта осуществляется только при помощи тросов или проволоки.
  • Жёсткая проводка управления — связь между командными рычагами и рулями самолёта осуществляется при помощи жёстких тяг — труб с шарнирными наконечниками регулируемой длины.
  • Смешанная проводка управления — связь между командными рычагами и рулями самолёта осуществляется при помощи тросов и тяг.

Безбустерная (непосредственная) система управленияПравить

Первым самолётом с аналоговой ЭДСУ стал американский A-5 «Виджилент». Первые серийные истребители с ЭДСУ — F-16, Су-27.

Гидравлическая система самолётаПравить

(Общие сведения в викистатье: Гидросистема)

Гидравлическая система используется на самолёте для привода подвижных частей, элементов и агрегатов. Применение гидравлической энергии вызвано сравнительно малыми габаритами и массой гидроприводов (по сравнению с электрическими агрегатами такой же мощности), простой фиксацией исполнительных механизмов в промежуточных положениях (в отличие от воздушных приводов). Рабочим телом служит специальное гидравлическое масло.

Приняты несколько стандартных рабочих давлений, на которые серийно выпускаются гидроагрегаты. На некоторых лёгких и сверхлёгких ЛА встречаются гидросистемы на давление 75-90 кг/см2, на средних и старых тяжёлых самолётах рабочее давление ГС составляет 150 кг/см2 (Ан-24/26, Ан-140, Ту-95), на большинстве средних и тяжёлых самолётов гидросистемы работают под давлением 210 кг/см2 (Ту-154, Ан-124 «Руслан» и мн. ), а на некоторых тяжёлых самолётах номинальное давление в ГС равно 280 кг/см2 (напр. , на Су-27 или Ту-160). Более высокие давления выбраны для получения больших рабочих усилий при наименьшем размере и весе механизмов.

Гидравлические приводы появились на самолётах в конце 30-х годов 20-го века. Так, в СССР первым пассажирским самолётом, оборудованным гидроприводом, стал ПС-84 (лицензионная версия американского самолёта Douglas DC-3). На нём гидросистема была необходима для привода посадочных щитков, уборки и выпуска шасси, торможения колёс шасси и работы агрегатов автопилота. Эта гидросистема имела рабочее давление 56±3 кг/см3, рабочей жидкостью служило масло МВП (нефтяное приборное масло серно-кислотной очисти, производится по ГОСТ 1805-76 до н.

В дальнейшем, с повышением скоростей полёта на самолёты стали устанавливать бустеры — гидроусилители в системе управления полётом. Для их функционирования на борту монтировалась вторая независимая от основной гидросистема, которая так и называлась — бустерная. С двумя разными гидросистемами было построено достаточно много типов скоростных и не очень самолётов (МиГ-19, МиГ-21, МиГ-23, Су-7Б, Су-17, Ту-95 и др. Для повышения надёжности функционирования стали применять дублирование, то есть параллельно работали две одинаковые гидросистемы на общий исполнительный агрегат, либо применялось разделение групп потребителей по разным системам, с возможностью принудительного переключения на другую систему (так, например, построена гидросистема на самолёте Ту-16, Ан-12, Ил-62 и др).

Однако, на относительно современных самолётах самое широкое распространение получил принцип многоканальности, когда параллельно на все потребители работают две, три или четыре совершенно одинаковые гидросистемы. Именно так сделано на самолётах Су-27, Ил-76 и Ан-148 (две системы); Су-24, Ту-22М, Ту-154, Ан-22 (по три системы), Ту-160 и Ан-124 (по 4-е системы).

Гидропанель на самолёте Як-42. 1 — вал закрылков, 2 — привод закрылков, 3 — кран закрылков, 4 — обратный клапан слива, 5 — порционер спойлеров, 6 — кран спойлеров, 7 — датчик манометра

В качестве рабочей жидкости гидросистем сначала применялись смеси глицерина и спирта, затем минеральные масла АУ и МВП. Уже достаточно давно на многих типах отечественной авиатехники широко применяется минеральное масло АМГ-10. Эта жидкость вырабатывается на основе глубокодеароматизированной низкозастывающей фракции, получаемой из продуктов гидрокрекинга смеси парафинистых нефтей и состоящей из нафтеновых и изопарафиновых углеводородов. Жидкость содержит загущающую (полимер винилбутилового эфира) и антиокислительную присадки, а также красный органический краситель. На некоторых типах самолётов применяется негорючая синтетическая жидкость типа НГЖ-5у, представляющая собой смесь эфиров фосфорной кислоты с присадками, улучшающими вязкостные, антиокислительные, антикоррозионные и антиэрозионные свойства. Она применяется, например, на Ил-86, Ил-96, Ил-114, Ту-204, Ту-214 и др. В гидросистемах высокого давления некоторых сверхзвуковых самолётов используется синтетическая жидкость 7-50с-3 (смесь полидиалкилсилоксановых олигомеров с органическим диэфиром, ингибиторами окисления и противоизносной присадкой), нормально работающая в диапазоне температур от -60°С до +175°С (например, гидросистемы самолётов Ту-160, МиГ-31). Все эти отечественные жидкости имеют зарубежные аналоги.

Запас гидравлической жидкости на борту находится в гидробаках. Применяются как отдельные баки для каждой гидравлической системы, так и общие баки с внутренними перегородками, разделяющие контуры. Для предотвращения кавитации и вспенивания рабочей жидкости применяют наддув гидросистемы — бак с гидросмесью находится под избыточным давлением газа (воздуха или азота), который давит на жидкость и предотвращает её кавитацию в линиях слива и на входе насосов.

Для создания давления применяют обычно плунжерные насосы постоянной производительности, смонтированные на коробках приводов маршевых двигателей, либо электрические насосные станции (НС) — гидронасос с приводом от электродвигателя. На старых типах самолётов применяли электродвигатели постоянного тока, сейчас широко применяют электродвигатели, работающие от сети переменного тока 208 вольт с частотой 400 гц. В качестве аварийного источника гидравлической энергии могут использоваться турбонасосные установки ТНУ, работающие от сжатого воздуха, отбираемого от ВСУ, или аварийные турбины — крыльчатки, выпускаемые в набегающий поток забортного воздуха.

Для снижения пульсаций рабочей жидкости, возникающих при работе насосов и для снижения провалов давления при подключении мощных потребителей на борту самолёта устанавливают гидроаккумуляторы. Часть гидроаккумуляторов используется в качестве аварийного источника энергии при полном отказе гидросистемы (например, в линии аварийного торможения колёс шасси). От гидроаккумулятора работает стояночный тормоз самолёта, емкости которого обычно хватает на сутки стоянки самолёта.

Для создания давления в гидросистеме самолёта при наземных проверках промышленность выпускала несколько типов гидравлических установок на прицепах, либо на автомобильном шасси (см. Аэродромная техника).

ПланерПравить

Планер самолёта — это несущая конструкция летательного аппарата.

То есть в конструкцию планера входят все сборочные узлы, агрегаты, системы и устройства, так или иначе имеющие отношение к безмоторному полёту, то есть планированию самолёта, отсюда происхождение его названия (в н. этот термин достаточно условен).

К конструкции планера не относят непосредственно силовую установку с её оборудованием и системами, а также специализированное бортовое оборудование и оснащение (авиационное оборудование, радиоэлектронное оборудование и системы вооружения).

Компоновочные схемыПравить

Ил-76, высокоплан с Т-образным оперением

Существует классификация самолётов по конструктивно-компоновочным признакам: по общей компоновке, по схеме фюзеляжа, по форме и расположению крыльев, по схеме оперения, по схеме шасси и типу опорного элемента, по типу и расположению двигателей. В описании конструкции самолёта первым приводится именно компоновочная схема с указанием вышеназванных признаков.

На сегодняшний день различают следующие основные компоновочные схемы самолётов:

  • классическая компоновка
  • бесхвостка
  • утка
  • летающее крыло
  • продольный триплан (с передним и хвостовым горизонтальным оперением)
  • тандем (два крыла расположены друг за другом)
  • конвертируемая (Ту-144, «Конкорд»)

Наиболее распространена и хорошо отработана на практике классическая компоновка самолёта.

ФюзеляжПравить

Фюзеляж является «телом» самолёта. В нём располагаются кабина экипажа, основные топливные баки, системы управления и контроля, пассажирские салоны, багажные отсеки (в пассажирских самолётах) или грузовые отсеки (в грузовых самолётах); оружие (в боевых самолётах), а также почти всё электронное оборудование.

В настоящее время применяют в основном балочные фюзеляжи — пустотелые балки с силовым набором и тонкостенной обшивкой.

Конструктивно силовая схема фюзеляжа, как правило, состоит из продольных силовых элементов — (лонжеронов и стрингеров), поперечных элементов — (шпангоутов) и обшивки — металлических, чаще дюралюминиевых листов. Обшивка, включённая в силовую схему планера и воспринимающая часть нагрузки называется работающей.

Пассажирские самолёты разделяют на узко- и широкофюзеляжные. У первых диаметр поперечного сечения фюзеляжа составляет в среднем 2-3 метра. Диаметр широкого фюзеляжа — не менее шести метров. Все широкофюзеляжные самолёты — двухпалубные: на верхней палубе располагаются пассажирские места, на нижней — багажные отсеки. Существуют самолёты с двумя пассажирскими палубами — Airbus A380 и Боинг 747.

КрылоПравить

Крыло является важнейшей частью самолёта и служит для создания подъёмной силы в полёте. Основополагающей является форма крыла, то есть вид в плане и спереди, а также поперечное сечение (профиль крыла). Внешние формы крыла и его профиль оказывают влияние на полётные характеристики самолёта в целом. Также крыло обеспечивает поперечную, а на самолётах бесхвостой схемы и продольную устойчивость и управляемость самолёта. К крылу могут крепиться двигатели и стойки шасси, также в крыле могут находится топливные баки. К основным характеристикам крыла относят: размах, удлинение, сужение, стреловидность, угол установки, поперечное V.

Крыло — это самая высоконагруженная часть самолёта. На него в полёте действуют силы изгиба, кручения и сдвига. На крыло действуют аэродинамические и массовые нагрузки:

  • аэродинамическая нагрузка возникает в результате взаимодействия крыла с воздушным потоком
  • под массовыми нагрузками понимают силы тяжести и силы инерции в криволинейном полёте, при полёте в болтанку и при неравномерном движении самолёта по земле в процессе взлёта или посадки.

Силовыми элементами конструкции каркаса крыла являются элементы продольного набора: лонжероны и стрингеры, и элементы поперечного набора — нервюры. Также почти всегда обшивка крыла включена в его силовую схему и воспринимает нагрузки кручения и изгиба. В наиболее нагруженных местах обшивка выполняется из толстых литых или фрезированных панелей, подкреплённых рёбрами жёсткости.

Половины крыла (консоли) чаще всего соединяются меж собой через силовой элемент — центроплан, проходящий через фюзеляж:

Крепление крыла непосредственно к центральной усиленной части фюзеляжа без выраженного центроплана больше характерно для боевых самолётов.

Крыло самолёта Боинг 777 с выпущенными закрылками и спойлерами.

Самолёт также может иметь два, три и более крыла. Чаще всего у самолётов, имеющих два крыла (бипланов) одно крыло крепится к верхней части фюзеляжа, а другое — к нижней (Ан-2).

На крыле установлено множество отклоняющихся меньших консолей (механизации): закрылки, предкрылки, спойлеры, элероны, интерцепторы и другие. По выполняемым функциям различают два вида механизации:

  • для улучшения взлётно-посадочных характеристик
  • для управления в полёте

Описание фото справа: Крыло самолёта «Боинг 777» с выпущенными закрылками и спойлерами. 1 — спойлер, 2 — подъёмник закрылка, 3 — трансмиссия закрылков, 4 — аэродинамические гребни, 5 — рельс закрылка, 6 — узел навески, 7 — рулевой привод, 8 — подвод гидросмеси, 9 — слив гидросмеси, 10 — электрожгут управления.

ОперениеПравить

Оперение не создаёт подъёмную силу и служит для балансировки самолёта в полёте и обеспечения его устойчивости и управляемости относительно трёх осей (см. статью: Система координат).

Оперение обычно устанавливается в хвостовой части фюзеляжа, реже в носовой.

Хвостовое оперение в большинстве случаев представляет собой вертикально расположенный киль (или несколько килей — как правило два киля) и горизонтальный стабилизатор, близкие по конструкции к крылу. Киль регулирует путевую устойчивость самолёта (по оси движения), а стабилизатор — продольную (т. устойчивость по тангажу).

Горизонтальное оперение устанавливается на фюзеляже (Ил-86) или на верху киля (T-образная схема (Ту-154, Ил-76)). Киль устанавливается на фюзеляж или в двухкилевой схеме — на обоих кончиках цельного стабилизатора (Ан-225). На некоторых боевых самолётах дополнительное оперение устанавливается в носовой части фюзеляжа (Су-35). Для обеспечения достаточной путевой устойчивости на высоких скоростях, сверхзвуковые самолёты имеют непропорционально большой киль (Ту-22М3) или два киля (Су-27, МиГ-25, F-15).

Киль представляет собой конструкцию из силового набора с обшивкой и руля направления (РН), также называемого рулём поворота (РП). Как правило, профиль киля симметричный, но для компенсации реактивного момента от воздушного винта(-ов) киль может быть целиком развёрнут относительно строительной оси самолёта на несколько градусов (это достаточно широко практиковалось на одномоторных самолётах середины 20-го века), либо установочный (нулевой) угол руля направления может быть немного смещён (обычно это единицы градусов).

Стабилизатор обычно состоит из двух зеркально одинаковых половин стабилизатора. Конструктивно включает силовой набор с обшивкой. На задней кромке стабилизатора расположен руль высоты (РВ), ранее применялся термин руль глубины. Профиль стабилизатора может быть симметричный с отрицательным установочным углом либо профиль, создающий отрицательную подъёмную силу, что вызвано необходимостью балансировки самолёта в полёте относительно его центра масс.

На современных самолётах часто используют переставной стабилизатор, который может менять свой угол установки в полёте в некоторых пределах (обычно не более 10 градусов) с помощью мощного привода. Переставной стабилизатор используют в первую очередь при взлёте и посадке, так как выпуск закрылков вызывает сильный пикирующий момент, который и компенсируется перестановкой стабилизатора на некоторый заранее определённый угол, автоматически либо вручную экипажем воздушного судна. Также переставной стабилизатор может применятся для перебалансировки в полёте, при смене полётного режима либо смещения центровки в результате сброса груза.

На некоторых высокоскоростных самолётах используют цельноповоротные стабилизаторы, не имеющие рулей высоты, а поворачивающиеся полностью с помощью мощных гидравлических приводов. Цельноповоротный стабилизатор стали применять из-за снижения эффективности РВ на некоторых режимах полёта при сверхзвуковой скорости. В некоторых случаях цельноповоротный стабилизатор может работать дифференциально, то есть одна половина отклоняется на пикирование, тогда как вторая на кабрирование. Это сделано для повышения эффективности поперечного управления либо в качестве резерва на случай отказа канала элеронов.

ШассиПравить

Основная опора шасси самолёта А320. 1 — амортизатор, 2 — механизм распора, 3 — цилиндр уборки-выпуска, 4 — подкос, 5 — серьга подвески на замок убранного положения, 6 — гидролинии тормозов, 7 — поршень тормоза

Система опор самолёта, предназначенная для его стоянки на земле, передвижение по аэродрому, взлёт и посадку. Для устойчивого положения положения самолёта на земле необходимо минимум три опоры. В зависимости от расположения опор относительно центра тяжести самолёта различают следующие основные схемы:

  • с передней опорой впереди центра тяжести самолёта
  • с хвостовой опорой позади центра тяжести
  • велосипедное шасси

Схема шасси влияет на характеристики устойчивости и управляемости самолёта при его движении по грунту.

На современных аппаратах в основном применяется схема с передней стойкой шасси либо её варианты. Эта схема имеет следующие преимущества:

  • обеспечивает хорошую устойчивость при разбеге и пробеге
  • предотвращает капотирование самолёта и позволяет использовать более эффективные тормоза
  • горизонтальное положение фюзеляжа создаёт хороший обзор экипажу, удобства пассажирам, упрощает погрузку и разгрузку грузами
  • способствует предотвращению (уменьшению) «козления», так как при ударе основными стойками при посадке угол атаки и коэффициент подъёмной силы крыла уменьшаются
  • при горизонтальном положении фюзеляжа горизонтально расположены и двигатели,при этом газовая струя выхлопа не наносит вреда покрытию аэродрома
  • и др. преимущества

Вместе с тем такая схема шасси создаёт сложности при рулении по мягкому грунту, так как передняя опора буквально «зарывается». При посадке с отказавшей передней опорой возникает достаточная опасность повреждения самолета.

Основные параметры трёхопорного шасси: база, колея, высота шасси, стояночный угол, посадочный угол и др.

Различают следующие основные элементы стоек шасси: силовые элементы, элементы кинематики и амортизирующие устройства.

Амортизирующие устройства шасси включают амортизаторы, гасители колебаний тележки (демпферы шасси) и пневматики. Телескопические амортизаторы используют только на самолётах, эксплуатирующихся исключительно на аэродромах с хорошим твёрдым покрытием, так как они плохо воспринимают боковые и продольные нагрузки. В основном на самолетах применяют рычажную и полурычажную подвеску.

Амортизатор колёс шасси — чаще всего это гидравлический демпфер с торможением на прямом и обратном ходу. В качестве пружинного элемента амортизатора в самолётах применяют закачанный в полость стойки под строго определённым давлением азот (ранее применяли сжатый воздух, но он окисляет гидравлическое масло и сокращает его срок службы). В качестве гидравлической жидкости в стойку обычно заливается специальное гидравлическое масло (сейчас чаще всего это АМГ-10, ранее применяли спирто-глицериновые смеси и нефтяные масла).

Колёсные тележки шасси. На всех самолетах, кроме лёгких, колеса шасси часто объединены в тележки шасси. Тележки шасси обычно бывают одноосные, двух- или реже трёхосные. На каждой оси установлена обычно пара колёс. Их так и называют: передняя пара, средняя пара или задняя пара. Парные колёса снижают давление на покрытие аэродрома, а также дублируют друг друга в случае прокола пневматика. Иногда на одной оси ставят не два, а четыре колеса. Разные самолёты могут иметь различное количество колёсных пар: от одной (А320) до семи (Ан-225).

Тормозная система колёс шасси. На небольших самолётах применяют колодочные тормоза (пара тормозных колодок с механизмом наподобие автомобильного). На более тяжёлых используют камерные тормоза, состоящие из кольцевой резиновой камеры на барабане колеса и кругового пакета небольших колодочек, которые прижимаются при подаче давления воздуха или гидросмеси в тормозную камеру (именно так работали тормоза на большинстве советских реактивных истребителей Су и МиГ). На тяжелых и скоростных самолётах устанавливают высокоэффективные дисковые тормоза. Дисковый тормоз состоит из пакета дисков, поочерёдно, через один, соединённых с барабаном колеса и вращающихся вместе с ним пакета дисков, неподвижно закреплённых на оси колеса. Пакет дисков при торможении сжимается при помощи силовых гидроцилиндров, расположенных по окружности неподвижной части колеса.

Тормозные колёса практически всех самолётов оборудованы антиюзовой автоматикой, так как юз не только снижает эффективность торможения, но и на большой скорости (например, на пробеге при посадке) всегда приводит к разрыву пневматиков и часто — к возгоранию резины колёс. Антиюзовый автомат работает на пределе юза — он не допускает резкого уменьшения угловой скорости вращения колеса, растормаживая колеса путём регулирования давления в тормозном контуре. При этом используется максимальный коэффициент трения между колесом и поверхностью аэродрома, что повышает эффективность тормозов и уменьшает износ шин.

Все тормозные колёса самолёта оборудуются т. термосвидетелями — сигнализаторами превышения предельных температур, представляющими собой подпружиненные штыри, запаянные в полость ступицы легкосплавным материалом. При перегреве колеса свыше 120-130°С термосвидетель выскакивает, что говорит о необходимости тщательной инспекции колеса и тормоза, и при необходимости замены и ремонта. Ранее для этих целей применяли специальную термоиндикаторную краску.

Охлаждение тормозных колёс. На многих современных самолётах с дисковыми тормозами внутри пустотелой оси колеса устанавливается высокооборотный электродвигатель с крыльчаткой, прогоняющий наружный воздух через тормозной механизм с целью охлаждения. На некоторых типах самолётов ранее применялось спиртовое испарительное охлаждение тормозов.

Управление поворотом самолёта на земле может осуществляться через привод к передней стойке шасси, дифференциацией режима работы двигателей (у самолётов с более чем одним двигателем) или подтормаживанием колёс на основных опорах. Колёса на передней опоре чаще всего имеют три режима разворота: режим руления (разворот на полные, максимально возможные углы в пределах ±50-60° ), режим «влёт-посадка» (автоматический поворот колёс на большой скорости движения от педалей путевого управления на углы до 10°, обычно ±7-8°) и режим самоориентирования, нужный при буксировке самолёта тягачом по аэродрому.

Система уборки и выпуска шасси. В полёте шасси убираются в специальные отсеки для уменьшения аэродинамического сопротивления, то есть повышения скорости и дальности полёта и уменьшения расхода топлива. Существует ряд кинематических схем уборки шасси и различные приводы. В кабине экипажа всегда имеется сигнализация положения стоек шасси. Также большинство самолётов оборудовано автоматикой, предотвращающей складывание шасси при нахождении самолёта на земле — в кинематике шасси применяются датчики нагрузки, которые выдают электрические сигналы в ряд систем самолёта (более подробно см. в разделах «Система уборки-выпуска» и «Концевые выключатели и сигнализация», статья «Шасси летательного аппарата»)

Конструкционные материалыПравить

В современных авиационных конструкциях планера самолёта широкое применение находят высокопрочные алюминиевые, магниевые и титановые сплавы; высокопрочные углеродистые, легированные и корозионно-стойкие стали; различные пластмассы; а также многослойные композиционные материалы (армирующий материал + наполнитель).

Оцените статью
RusPilot.com