Рули управления самолетом

Системы и органы управления самолетом — основы пилотирования

Управление самолетом может осуществлять только человек, прошедший обучение пилотированию. Управление пассажирскими самолетами выполняет экипаж, состоящий из командира воздушного судна и второго пилота. Управление истребителем осуществляет военный, служащий по контракту и обладающий офицерским званием. Стоит отметить, что в военной авиации термин «пилот» не применяется, самолет управляется летчиком.

Осуществлять управление самолетом гораздо труднее, чем автомобилем. Во-первых, это требует значительных физических усилий. Во-вторых, у авиалайнера имеется несколько рулей, которые отвечают за различные функции. В отличие от машины самолет можно направить не только влево или вправо, но также вниз или вверх, накренить вбок и так далее. Поэтому в системе управления самолетом имеется несколько рулей, отвечающих за высоту, направление, отклоняемые элероны.

kak-upravlyat-samoletom4-e1463470883582-9505189

Схема расположения осей относительно друг друга и движения самолета по данным осям

Напротив кресла пилота располагается штурвал, который выполняет приблизительно ту же функцию, что и руль автомобиля, а именно, регулирует положение носа лайнера и угол наклона крыльев. Между сиденьями пилотов находятся две кнопки — газ и регулятор горючей смеси. Кнопка газа отвечает за впуск топлива.

Интересный факт: за поворот самолета на взлетно-посадочной полосе отвечают две педали, расположенные под сиденьем пилота, а не штурвал.

Пилоту необходимо не только контролировать штурвал, но и следить за информацией о полете. На приборной панели выводятся следующие данные: высота над уровнем моря, на которой находятся самолет, курс, скорость, температура за бортом и так далее.

Многие мальчики мечтали когда-то стать пилотами, и лишь единицы воплощают детскую мечту. Это не просто романтичная профессия, она еще и крайне ответственная. Получить лицензию пилота частного самолета относительно нетрудно: необходимо пройти курсы и налетать минимум 40 часов, однако в кресло командира воздушного судна гражданской авиации можно попасть только после 15 лет стажа.

Поднимаясь на борт туристического лайнера, наверное, практически у всех пассажиров возникает подобная мысль: «Как же все-таки эта штука летает?». Чаще всего основная часть полета проходит в автоматическом режиме, а мастерство и опыт пилота требуются во время взлета и посадки. В данной статье мы расскажем в общих чертах, как управлять самолетом.

kak-upravlyat-samoletom1-7557218

Процедура посадки начинается в тот момент, когда пилот снижает высоту и заканчивается полной остановкой самолета на ВПП. Вначале пилоту необходимо зайти на посадку и лишь после этого начать снижение. Во время захода на посадку лайнер маневрирует в пределах воздушной территории аэропорта, меняет конфигурацию самолета, снижает скорость до посадочной.

Пилот сажает самолет, ориентируясь исключительно на показания приборов. Как только лайнер опускается до высоты 100 метров, необходимо переключить внимание на взлетно-посадочную полосу. После прохождения точки, находящейся на высоте 50 метров от земли, наступает самый сложный этап: пилоту необходимо уловить правильный момент и потянуть на себя штурвал так, чтобы задние шасси аккуратно коснулись ВПП. Далее нужно подать штурвал вперед, чтобы на посадочную полосу опустились и передние колеса. Затем пилот убавляет тягу и начинает торможение. Когда самолет находится на земле, направление его движения задается вновь педалями, а не штурвалом. О процессе обучения пилотов, а также наглядно о том, как управлять самолетом, рассказывает видео.

https://youtube.com/watch?v=JVdzOZG2R4E%3Ffeature%3Doembed

Для управления самолета предусмотрена сложная система, которая бывает трех видов:

  • неавтоматической;
  • полуавтоматической;
  • автоматической.

Управление в неавтоматическом (ручном) режиме требует от пилота высочайшего уровня мастерства, так как ему необходимо контролировать буквально каждую деталь: угол наклона носовой части самолета, высоту, положение в воздухе и так далее. Вдобавок даже само удержание рулевых поверхностей в нужном положении требует прикладывания довольно больших физических сил. Как правило, полеты в нормальных условиях не проходят в ручном режиме, ведь автоматизация позволяет гарантировать максимальную безопасность, осуществляя контроль за настолько большим количеством параметров, одинаково уследить за которыми человек практически не в силах, а также исключая влияние человеческого фактора.

В полуавтоматическом режиме пилоту оказывается помощь со стороны автоматических систем, которые многократно облегчают процесс управления. Однако все же успех по большей части зависит от действий капитана воздушного судна. Полностью автоматический режим примечателен тем, что отдельные этапы полета проходят без участия человека вообще.

Для взлета пилоту необходимо получить разрешение. Закрылки должны располагаться под углом 10 градусов. Их функция — создание подъемной силы. Сам лайнер должен быть повернут навстречу ветру. Сначала двигатели необходимо тщательно прогреть. Когда самолет готовиться ко взлету, очень интересно наблюдать в иллюминатор, как меняется положение отдельных деталей на крыльях, как выезжают новые плоскости. Это закрылки, функция которых заключается в снижении скорости при взлете. Для взлета не нужна большая скорость. Более того, для полного разгона не хватило бы никакой взлетно-посадочной полосы. Однако искусственное снижение скорости уменьшает подъемную силу.

Чтобы оторваться от земли, самолету необходимо набрать определенную скорость. При достижении необходимой подъемной силы нос лайнера сам начинает подниматься над землей (в результате увеличения так называемого угла атаки). В нужный момент пилоту необходимо потянуть за штурвал, чтобы лайнер взлетел. Как правило, непосредственно полетом управляет бортовой компьютер в автоматическом режиме, лишь в зоне турбулентности требуется вмешательство пилота.

kak-upravlyat-samoletom2-4067212

Для обучения пилотов полностью воссоздается на тренажере кабина настоящего лайнера вплоть до компьютерного изображения ВПП

Поверхность, которая позволяет пилоту регулировать и контролировать положение самолета в полете 250px-controlsurfaces-1736185 Основные поверхности управления самолетом и движение.

Самолет поверхности управления полетом представляют собой аэродинамические устройства, позволяющие пилоту регулировать и контролировать полет самолета ориентация.

Разработка эффективного набора поверхностей управления полетом была важным шагом в развитии самолетов. Первые попытки конструкции самолета с неподвижным крылом позволили создать достаточную подъемную силу, чтобы оторвать самолет от земли, но после взлета самолет оказался неуправляемым, что часто приводило к катастрофическим результатам. Развитие эффективных средств управления полетом — вот что позволило обеспечить стабильный полет.

В этой статье описываются поверхности управления, используемые на самолетах обычной конструкции. В других конфигурациях самолетов с неподвижным крылом могут использоваться другие поверхности управления, но основные принципы остаются неизменными. Органы управления (джойстик и руль направления ) винтокрылого самолета (вертолет или автожир ) совершают те же движения вокруг трех осей вращения, но управлять вращающимися органами управления полетом (диск несущего винта и диск хвостового винта ) совершенно по-другому.

Основы управления самолетом

Самолет в полете управляется по трем осям.

Изменение наклона вверх/вниз называется управлением по тангажу (pitch). Основной способ изменить тангаж самолета – дать штурвал от себя (нос вниз) или на себя (нос вверх). На тангаж также влияет множество других параметров, некоторые из которых мы разберем ниже.

Наклон самолета на крыло называется управлением по крену (bank/roll). Основной способ создания крена – поворот штурвала влево или вправо. Крен будет расти до тех пор, пока штурвал не будет возвращен в нейтральное положение, после чего большая часть самолетов будет стремиться удержать заданный крен. Для нейтрализации крена обычно выполняют обратное движение штурвалом. Как и в случае с тангажом, крен также зависит от множества других параметров.

Рыскание в самолете представляет собой движение носа в сторону, а именно вправо или влево. Это движение, так же как и крен, зависит от различных факторов, влияющих на полет. Для управления рысканием используются педали.

Обратите внимание, что педали в самолете имеют двойную функцию. Их можно нажимать (это работает как тормоз), а можно толкать вперед (как руль, на земле и в воздухе).

Кроме штурвала и педалей, в самолете есть и другие важные элементы управления:

  • Ручка управления дроссельной заслонкой (throttle), далее «газ» – эквивалентна педали газа и управляет количеством поступающей в двигатель топливно-воздушной смеси. На большей части самолетов она имеет закругленную форму и окрашена в черный цвет.
  • Ручка управления закрылками контролирует закрылки — специальные поверхности на внутренней стороне крыла, которые обеспечивают необходимую подъемную силу при низких скоростях, используемую во время взлета и посадки. Во время полета закрылки убираются, чтобы избежать дополнительного аэродинамического сопротивления.
  • Колесо управления триммером руля высоты (trim wheel), далее «триммер». Как мы выясним чуть позже, изменение параметров полета требует от пилота приложения разного давления на штурвал. Поворот этого колеса изменяет положение «нейтральной точки» штурвала – то есть вы сможете сделать так, чтобы штурвал сам поддерживал это давление без вашего участия.

Основные органы управления

У всех самолетов (гражданских и военных) есть общие элементы управления, включающие:

  • штурвал;
  • педали;
  • рычаги;
  • различные приборы и индикаторы.

Штурвал является главным органом управления в самолете, который используется для управления судном по оси крена и тангажа.

Схема кабины самолета
1 — Пространственное положение самолета; 2 — Навигационный дисплей; 3 — Дублирующий прибор пространства и положения самолета и навигации; 4 — Часы; 5 — Бортовой компьютер; 6 — Ручка выпуска и уборки шасси; 7 — Садстик; 8 — Кнопка отключения автопилота; 9 — Педали торможения; 10 — Противопожарная система; 11 — Кнопки включения топливных насосов; 12 Ручка открытия окна; 13 — Автопилот; 14 — Рычаг управления двигателем; 15 — Тумблер управления спойлерами; 16 — Ручка управления закрылками; 17 — Кнопки включения аккумуляторных батарей; 18 — Кнопки управления температурой воздуха в кабине и салоне самолета; 19 — Планшетный компьютер; 20 — Панель управления самолетом

Различают ручную, полуавтоматическую, автоматическую и комбинированную системы управления гражданским самолетом. Изначально самолеты имели только ручную систему управления, которая требовала значительных усилий пилота.

Многие гражданские самолеты управляются в комбинированном режиме. В пассажирских лайнерах установлен автопилот, который переводит полет в автоматический режим.

Для получения лицензии частного пилота необходимо изучить все органы управления самолетом, пройти тесты, набрать достаточное количество часов налета и пройти медицинскую комиссию.

Штурвал

Посредством поворота штурвала в стороны осуществляется регулирование крена. Тяга на себя и от себя позволяет управлять тангажом. Повороты ручки управления самолетом воздействуют на крыльевые элероны. Тяга на себя и от себя позволяет регулировать рули высоты и элевоны. В итоге при повороте штурвала влево или вправо судно начинает крениться. Притягивание ручки управления самолетом на себя — задирает нос летательного аппарата, а отталкивание приводит к пикированию. Стоит отметить, что передача сигналов на элероны и рули высоты осуществляется в механическом, электродистанционным или гидравлическом режиме.

Штурвал управления самолетом

Перед управлением истребителем необходимо изучить функционал и разновидности штурвалов. На органе управления штурвалом могут быть установлены дополнительные переключатели, отвечающие за радиосвязь или активацию специализированных режимов.

Педали

Для управления летательными аппаратами используются педали, которые воздействуют на руль контроля. В кабине находятся две педали, от нажатия на них зависит поворот самолета вправо или влево без крена (это называется рысканье). Пилот должен чувствовать работу педалей, чтобы правильно управлять положением судна.

Педали

Изменение курса на самолете осуществляется педалями во время разбега и пробега. Рулевое управление позволяет корректировать курс незначительно. Поворот штурвала позволяет быстрее изменять направление полета при крене.

Будущий пилот изучает теорию и проходит практику в течение длительного периода времени для управления летательными аппаратами. Для управления частным маленьким самолетом необходимо налетать не менее 25 часов с инструктором и соответствовать другим требованиям.

Сложность полета зависит от настроек управления самолетом и конкретного судна. Большинство лайнеров могут лететь в автоматическом режиме, но маленькие гражданские самолеты без автопилота требуют ручного контроля положения, скорости и других параметров в течение всего полета.

Рычаги

Основными рычагами управления воздушным судном являются рычаги управления двигателем (РУД), которые позволяют изменять тягу двигателя. Увеличение тяги приводит к ускорению, а уменьшение — к замедлению. Однако, при увеличении тяги, расход топлива также увеличивается. Для того чтобы понять, как правильно настраивать управление самолетом, необходимо изучить оптимальные положения рычагов и тяги при различных ситуациях.

Рычаги

При полете используется малый газ для экономии топлива. Корректировка рычага происходит по показаниям приборов. Управление истребителем аналогично управлению другими летательными аппаратами. На боевых судах есть форсажный режим, который включается при переводе рычага в положение полного газа.

Приборы

Показатели полета отображаются на приборах. Несправность приборов может привести к серьезным последствиям, поэтому при обслуживании судна особое внимание уделяется функционированию датчиков. Среди приборов самолета можно выделить:

  • высотомер;
  • индикатор воздушной скорости;
  • термометр;
  • авиагоризонт;
  • тахометр;
  • вариометр;
  • курсовые приборы.

На приборной панели отображается множество показателей. При виде самолетных приборов впервые, человек сталкивается со сложностями. Для управления судном необходимо знать расположение и назначение каждого прибора.

Приборная панель СУ-25
Приборная панель СУ-25

Чтение информации с приборной панели является важной частью обучения пилотированию. Независимо от того, какой тип пилота человек хочет стать, необходимо знать расположение всех датчиков. Следует отметить, что опытный специалист может справиться с посадкой самолета только по приборам в условиях нулевой видимости.

Как стать пилотом?

Лицо, управляющее воздушным судном, называется пилотом или летчиком. Для получения профессии гражданского пилота, требуется пройти обучение в летном училище или частной школе. Наиболее простым вариантом является получение свидетельства частного пилота. Военный летчик подготавливается в Вооруженных Силах России. Для того, чтобы стать летчиком боевого самолета, необходимо сначала стать военнослужащим по контракту и пройти обучение в военном учебном заведении.

Частный пилот может управлять только не коммерческими судами. Важно учитывать, что существуют разные виды лицензий. После получения частного сертификата можно получить коммерческую лицензию пилота для управления самолетами, занятыми в авиаперевозках. Стать пилотом и управлять самолетом можно только после подтверждения квалификации. Коммерческий пилот и военный летчик – профессии, на которые предъявляются высокие требования.

Связанная система координат

Самолет движется по сложной траектории, для описания перемещения судна по воздуху используются оси ОX (продольная), ОY (вертикальная), ОZ (поперечная). Так как оси движутся и вращаются вместе с самолетом, система координат была названа связанной. Все они проходят через центральную точку масс.

Ось ОХ является основной, ее называют строительной. Закладывается она на начальном этапе – при проектировании лайнера. Во время вращения вокруг данной оси самолет опускает одну консоль крыла и одновременно поднимает другую. Данное движение называют термином «крен». Осуществлять управление креном пилот может при помощи элеронов.

Вертикальная ось OY проходит перпендикулярно предыдущей. Располагается она непосредственно в плоскости симметрии конструкции. Движение вокруг данной оси в авиации называется забавным словом «рыскание». Управление движения самолета по данной оси осуществляется при помощи руля направления, в результате смещения положения которого нос воздушного судна отклоняется вправо-влево.

Ось OZ находится в перпендикулярном положении от оси симметрии. При вращении вокруг данной оси самолет совершает движение, называемое «тангажом» (говоря простым языком, самолет поднимает и опускает нос). Угол между осями OX и OZ называется углом тангажа. Если угол увеличивается, лайнер карбирует, а если уменьшается – пикирует. Тангажом управляет руль высоты.

Рули управления

Рули управления
Рули управления

подвижные аэродинамические поверхности, предназначенные для балансировки и обеспечения управляемости и устойчивости летательного аппарата. К Р. у. относят элероны, руль высоты и руль направления. Элероны размещаются в хвостовой части крыла и используются для управления летательного аппарата относительно его продольной оси. Руль высоты устанавливается в хвостовой части горизонтального оперения, представляет собой подвижную часть оперения, предназначенного для управления летательным аппаратом относительно поперечной оси. Руль направления располагается в хвостовой части вертикального оперения; представляет собой подвижную часть оперения, с его помощью осуществляется управление летательным аппаратом относительно вертикальной оси.

По силовой схеме Р. у. — многоопорные балки, подвешенные на узлах крепления и нагруженные аэродинамическими силами. Состоят обычно из тонкостенного лонжерона круглого, швеллерного или двутаврового сечения, набора нервюр, обшивки и законцовочного профиля. На лонжероне устанавливается рычаг, к которому шарнирно крепится проводка управления. Р. у. имеют аэродинамическую компенсацию и грузы для весовой компенсации. На летательном аппарате с необратимым бустерным управлением Р. у. могут не иметь весовой и аэродинамической компенсации. Для снижения аэродинамических шарнирных моментов на задней кромке Р. у. могут устанавливаться управляемые аэродинамические поверхности — сервокомпенсаторы (см. Сервокомпенсация), флеттнеры и триммеры, Р. у. подвешиваются к силовым элементам крыла и оперения при помощи нескольких узлов крепления. В обшивке Р. у. должны быть люки для подхода к узлам управления и крепления. На задней кромке устанавливаются разрядники статического электричества. Для повышения надёжности Р. у. могут состоять из нескольких секций (в этом случае каждая секция имеет свою проводку управления).

Иногда к Р. у. относятся некоторые органы управления, выполняющие совмещённые функции (например, флапероны, которые работают в качестве элеронов и закрылков; элевоны, которые работают как элероны и рули высоты). При V-образном оперении Р. у. действуют одновременно в качестве рулей высоты и направления. До 50-х гг. в основном применялись Р. у. с полотняной обшивкой. Рост скоростей полёта и увеличение аэродинамических нагрузок привели к появлению цельнометаллических Р. у. и Р. у. с обшивкой из композиционных материалов. Р. у. с полотняной обшивкой применяются только для лёгких и спортивных самолётов и планеров.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия.
.
.

Смотреть что такое «Рули управления» в других словарях:

Остальные органы управления

На корабле, кроме основных органов контроля, есть дополнительные, которые не присутствуют на всех самолетах. Среди них выделяют:

  • основной пилотажный прибор (имеется в пассажирском Боинге 737);
  • навигационный дисплей (электронный прибор);
  • панель выбора режима полета.

Современные летательные аппараты содержат много электронной техники. На навигационном дисплее и пилотажном приборе отображается основная информация о полете, позиции самолета, скорости и других важных показателях. Для расширения своих знаний следует изучать новые средства контроля аппаратуры. Перед началом пилотирования гражданский пилот изучает особенности и уникальные черты того самолета, которым он будет управлять.

Основной пилотажный прибор
Основной пилотажный прибор. 1 — FMA (Flight Mode Annunciator). Указывает режимы работы автомата тяги и системы траекторного управления самолётом; 2 — Блок указателя скорости; 3 — Авиагоризонт; 4 — Указатель работы автопилота; 5 — Блок указателя высоты; 6 — Указатель вертикальной скорости; 7 — Указатель курса и путевого угла.

Командир воздушного судна и второй пилот отвечают за управление электроникой. После взлета авиалайнера обычно включают автопилот, переведя режим полета на панели выбора.

А Вы бы хотели научиться управлять самолетом?

Системы управления самолетом

В зависимости от доли участия человека в процессе, существуют 3 режима. Неавтоматический предполагает ручное пилотирование, в полуавтоматическом пилота «страхует» автоматика, а автоматический почти не требует участия человека

Пилотирование самолета — слаженная система, которая может показаться непонятной на первый взгляд. Она состоит из трех подгрупп механизмов:

  • командные рычаги– ручку управления или знакомый даже обывателям штурвал и педали
  • система проводок, обеспечивающая связь между рулями и командными рычагами
  • рули, регулирующие высоту, направление и крен

В передвижении учитываются 3 оси – вертикальная, продольная и поперечная – и рули помогают от них не отклоняться. Управляются последние командными рычагами. Наклон штурвала на себя, от себя поднимет или опустит нос аппарата и скорректирует высоту. Повороты приведут в движение аэродинамические элероны на корпусе и помогут накренить машину влево или вправо. А чтобы сориентировать ее относительно вертикальной оси, пилоты задействуют педали, связанные с рулем направления.

Вспомогательные поверхности управления

220px-klm-fokker70-airbrakes-arp_-750pix-5940190 KLM Fokker 70, показывающие положение органов управления полетом закрылка и подъемно-опрокидывающейся платформы. Подъемные самосвалы представляют собой приподнятые панели кремового цвета на верхней поверхности крыла (на этом снимке их пять на правом крыле). Закрылки — это большие наклонные поверхности на задней кромке крыла.

Спойлеры

220px-747-8i-trailing-wing-surfaces-5770574 Поверхности управления полетом задней кромки крыла Boeing_747-8. Вверху слева: все поверхности в нейтральном положении; Вверху по центру: правый элерон опущен; Вверху справа: спойлеры подняты во время полета; Средний ряд: откидные створки Фаулера выдвинуты (слева), увеличены (посередине), откидываются на петлях, а внутренняя прорезь еще больше откидывается (справа); Нижний ряд: интерцепторы, поднятые во время посадки

На самолетах с низким лобовым сопротивлением, таких как планеры, интерцепторы используются для нарушения воздушного потока над крылом и значительного уменьшения подъемной силы. Это позволяет пилоту-планеру терять высоту без увеличения скорости полета. Спойлеры иногда называют «лифтовые самосвалы». Спойлеры, которые можно использовать асимметрично, называются спойлерами и могут влиять на крен самолета.

Закрылки

Закрылки устанавливаются на задней кромке на внутренней части каждого крыла (около корней крыла). Они отклоняются вниз, чтобы увеличить эффективную кривизну крыла. Закрылки увеличивают максимальный коэффициент подъемной силы самолета и, следовательно, снижают его скорость сваливания. Они используются при полете с малой скоростью, с большим углом атаки, включая взлет и спуск для посадки. Некоторые самолеты оснащены «флаперонами », которые чаще называют «бортовыми элеронами». Эти устройства функционируют в основном как элероны, но на некоторых самолетах они «опускаются» при раскрытии закрылков, действуя таким образом как закрылки и бортовые элероны управления креном.

Предкрылки

Предкрылки, также известные как устройства передней кромки, представляют собой продолжения передней части крыла для увеличения подъемной силы и предназначены для уменьшения скорости сваливания за счет изменения воздушного потока над крылом. Планки могут быть фиксированными или выдвижными — фиксированные планки (например, как на Fieseler Fi 156 Storch ) обеспечивают отличную низкую скорость и возможности STOL, но ставят под угрозу более высокие скоростные характеристики. Выдвижные предкрылки, как показано на большинстве авиалайнеров, обеспечивают пониженную скорость сваливания при взлете и посадке, но убираются для крейсерского полета.

Пневматические тормоза

220px-eurowings_bae146-300_d-aewb_arp-6901133 Пневматические тормоза в задней части фюзеляжа Eurowings BAe 146-300

Пневматические тормоза используются для увеличения лобового сопротивления. Спойлеры могут действовать как воздушные тормоза, но это не чисто воздушные тормоза, поскольку они также работают как подъемно-опрокидывающиеся машины или, в некоторых случаях, как поверхности управления креном. Воздушные тормоза обычно представляют собой поверхности, которые отклоняются от фюзеляжа наружу (в большинстве случаев симметрично на противоположных сторонах) в воздушный поток для увеличения сопротивления формы. Поскольку в большинстве случаев они расположены в другом месте самолета, они не влияют напрямую на подъемную силу, создаваемую крылом. Их цель — замедлить самолет. Они особенно полезны, когда требуется высокая скорость спуска. Они распространены на высокопроизводительных военных самолетах, а также на гражданских самолетах, особенно тех, у которых отсутствует обратная тяга.

Управляющие поверхности дифферента

Элементы управления триммированием позволяют пилоту уравновешивать подъемную силу и сопротивление, создаваемое крыльями и управляющими поверхностями в широком диапазоне нагрузки и скорости полета. Это снижает усилие, необходимое для регулировки или поддержания желаемого полета положения.

Триммер руля высоты

Триммер руля высоты уравновешивает управляющую силу, необходимую для поддержания правильной аэродинамической силы на хвосте для балансировки самолета. При выполнении определенных летных упражнений может потребоваться большая балансировка для поддержания желаемого угла атаки. В основном это применимо к медленному полету, где требуется положение носа вверх, что, в свою очередь, требует большого дифферента, в результате чего хвостовое оперение оказывает сильную прижимную силу. Триммер руля высоты коррелирует со скоростью воздушного потока над хвостовым оперением, поэтому изменения воздушной скорости самолета требуют повторного триммирования. Важным параметром конструкции самолета является его устойчивость при балансировке для горизонтального полета. Любые возмущения, такие как порывы ветра или турбулентность, будут подавляться в течение короткого периода времени, и самолет вернется к своей сбалансированной скорости горизонтального полета.

Триммер хвостового оперения

За исключением очень легких самолетов, триммеры на рулях высоты не могут обеспечить требуемую силу и диапазон движения. Для обеспечения соответствующего дифферентного усилия вся горизонтальная оперение сделана регулируемой по шагу. Это позволяет пилоту выбирать точно правильную величину положительной или отрицательной подъемной силы от хвостового оперения, уменьшая сопротивление руля высоты.

Управляющий рог

220px-mass_balancing_me_bf110-5303965 Массовый баланс, выступающий из элерона, используемый для подавления флаттера

Управляющий рог — это часть управляющей поверхности, которая выступает впереди точки поворота. Он создает силу, которая увеличивает прогиб поверхности, уменьшая управляющее давление, которое испытывает пилот. Рупоры управления могут также включать в себя противовес, который помогает сбалансировать управление и предотвращает колебание в воздушном потоке. В некоторых конструкциях предусмотрены отдельные антифлаттерные грузы.

(В радиоуправляемых авиамоделях термин «контрольный клаксон» имеет другое значение.)

Пружинный триммер

В простейшем случае триммирование выполняется механическим пружина (или банджи ), которая добавляет соответствующую силу для увеличения управляющего воздействия пилота. Пружина обычно соединяется с рычагом дифферента руля высоты, чтобы пилот мог регулировать прилагаемое усилие пружины.

Триммер руля направления и элеронов

Большинство самолетов с неподвижным крылом имеют поверхность управления дифферентом на руле высоты, но более крупные самолеты также имеют регулятор дифферента для руля направления и еще один для элеронов. Триммер руля направлен против любой асимметричной тяги двигателей. Триммер элеронов предназначен для противодействия эффектам смещения центра тяжести от осевой линии самолета. Это может быть вызвано тем, что топливо или полезный груз загружается больше с одной стороны самолета по сравнению с другой, например, когда в одном топливном баке больше топлива, чем в другом.

Система управления самолётом

Для управления полётом самолёта используется система управления, которая может быть автоматической, полуавтоматической или неавтоматической, в зависимости от заданной траектории.

Пилот в ручном режиме управляет рулевыми поверхностями самостоятельно, чтобы удерживать нужное положение. В полуавтоматической системе пилот использует автоматические устройства для улучшения управляемости. В автоматическом режиме система автоматически выполняет этапы полета без участия пилота. Однако пилот может взять управление на себя в любое время.

Пошаговая инструкция управления самолетом

Для управления летательным аппаратом необходимо пройти продолжительное обучение. В экстренной ситуации человеку может потребоваться взять контроль над авиалайнером в качестве второго или главного пилота. Изучение шаг за шагом инструкции поможет понять, как управляется пассажирский лайнер.

Штурвал самолета

Интересна будет пошаговая инструкция для желающих узнать, как пилотируется гражданский авиалайнер. Самые сложные моменты для пилотов – это взлет и посадка, во время полета внештатные ситуации и форс-мажорные обстоятельства возникают редко.

Перед изучением инструкции по управлению воздушным судном необходимо ознакомиться с устройством и принципом работы летательного аппарата. Современные системы управления самолетами требуют минимального участия пилота.

Подготовка к взлету

Если человек оказался пилотом в лайнере, то первая задача — подготовиться к взлету. Это включает осмотр самолета, проверку штурвала и закрылок. Органы управления должны без препятствий двигаться. Отдельные части самолета может проверить только опытный механик.

После проверки датчиков и органов контроля, а также работы каждого отдельного механизма, начинается взлет, который является началом полета. Для успешного взлета летательного аппарата необходимо выполнить определенный набор действий.

Взлет

При вылете самолета с взлетной полосы контролируют диспетчеры аэропорта, которые регулируют взлет и посадку. До начала взлета разрешение получать запрещено. Перед вылетом пилот убеждается в том, что все системы находятся в подходящем положении (закрылки взведены в вертикальное положение). Процедура взлета включает в себя следующие этапы:

  1. Выровнять самолет на взлетно-посадочной полосе. Также потребуется убедиться в том, что тормоза опущены и курс на приборах соответствует курсу ВПП.
  2. Включить посадочные фары и выключить рулежную фару. После этого потребуется увеличить обороты двигателя до 40% и дать им стабилизироваться (после стабилизации сработает соответствующий датчик).
  3. Убедиться в том, что правильный режим взлета установлен. Контролировать РУД и начать взлет.
  4. Давить на штурвал от себя до достижения скорости в 80 узлов. Также внимательно следить за показателями.
  5. После достижения скорости принятия решения командир воздушного судна принимает окончательное решение о взлете или прекращении процедуры.
  6. После команды взлета руки с РУД убираются, ручка для управления самолетом (штурвал) тянется на себя. После успешного взлета необходимо продолжить набор высоты и следить за датчиками.
Схема процедуры взлета
Схема процедуры взлета

Автоматический режим позволяет достигать нужной высоты. Для безопасного взлета необходимо наличие КВС и второго пилота в кабине. Управление пассажирским летательным аппаратом в одиночку — задача очень сложная.

Полет

Во время лета необходимо следовать установленным параметрам, используя автопилот или ручное управление. Активные системы управления авиалайнерами помогают сохранять необходимые значения. Основная задача во время полета — поддерживать заданный курс, высоту и скорость. Для корректировки параметров полета можно изменить тягу, крен или тангаж.

Посадка

Командир и второй пилот осуществляют посадку по приборам. Управление самолетом проще, чем его посадка. Для выполнения посадки выполняются определенные действия.

  1. Примерно за 5 миль перед входом в глиссаду (глиссада — траектория полета непосредственное перед посадкой) потребуется выпустить закрылки. Убедиться в том, что выпуск закрылок не противоречит требованиям по скорости.
  2. Включить режим захода на посадку. Дождаться срабатывания датчиков.
  3. Установить курс на взлетно-посадочную полосу.
  4. Установить контакт с наземными ориентирами. При невозможности сделать это — уйти на второй круг.
  5. Медленно снижать тягу таким образом, чтобы при касании добиться положения рычага «малый газ».
  6. На высоте 20–25 футов начинается выравнивание судна. Требуется потянуть ручку управления самолетом (штурвал) на себя, создавая тангаж 6 градусов.
  7. После сцепления с ВПП контролировать торможение. При необходимости надавить на штурвал для того, чтобы прижать переднюю опору шасси и улучшить управляемость.

При посадке командир воздушного судна управляет им, а второй пилот следит за датчиками и информирует о срабатывании индикаторов. Каждый член экипажа выполняет свою задачу при взлете и посадке. При соблюдении всех норм посадка пассажирского самолета проходит стандартно.

При выполнении процедуры в условиях неблагоприятной обстановки необходимо соблюдать специальные инструкции. При посадке, если пилот замечает, что не удается установить связь с земными ориентирами или не работают нужные датчики, самолет возвращается на второй круг.

Руль направления

  • Руль направления — орган управления самолёта, расположенный в хвостовом оперении и предназначенный для управления самолётом относительно нормальной оси (то есть при помощи руля направления изменяется угол рыскания).

    Представляет собой подвижную вертикальную плоскость, крепящуюся к килю.

    Воздействие на руль направления осуществляется посредством нажатия на педали, расположенные в кабине пилота.

    Руль направления на тяжёлых магистральных авиалайнерах используется в основном для корректировки курса на разбеге и пробеге.

    В то же время на сверхзвуковых самолётах при больших скоростях полёта радиус разворота получается слишком велик, поэтому в канал крена вводят так называемый «перекрёстный сигнал по курсу». При этом с вводом самолёта в крен поворотом штурвала (отклонением РУС) одновременно с отклонением элеронов на некоторый пропорциональный угол отклоняется и руль направления.

Связанные понятия

Руль высоты́ — аэродинамический орган управления самолёта, осуществляющий его вращение вокруг поперечной оси.

Закры́лок — профилированная отклоняемая поверхность, симметрично расположенная на задней кромке крыла, элемент механизации крыла. Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полёте на малых скоростях. Существует большое число типов конструкции закрылков.

Механиза́ция крыла́ — совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и так далее.

Флюгирование винта — поворот (во время полёта самолёта) лопастей воздушного винта регулируемого шага в такое положение, при котором предотвращается авторотация винта, а вклад винта в лобовое сопротивление самолёта становится минимальным. Требуемый эффект достигается при угле установки лопастей (относительно плоскости вращения) около 85—90°. Применяется в случаях, когда необходимо минимизировать сопротивление после отказа двигателя в полёте..

Киль — часть оперения летательного аппарата (ЛА), расположенная в нормальной плоскости летательного аппарата (которая обычно совпадает с его плоскостью симметрии) или наклонной плоскости в случае V-образного оперения. Киль предназначен для обеспечения устойчивости по углу скольжения летательного аппарата. К задней кромке киля на шарнирах обычно крепится руль направления (на рисунке справа показан жёлтым).

Шасси летательного аппарата — система опор летательного аппарата, обеспечивающая его стоянку, передвижение по аэродрому или воде при взлёте, посадке и рулении. Обычно представляет собой несколько стоек, оборудованных колёсами, иногда используются лыжи или поплавки. В некоторых случаях используются гусеницы или поплавки, совмещенные с колесами.

Скольже́ние в авиации — движение летательного аппарата (ЛА) относительно воздуха, при котором встречный поток воздуха набегает на самолёт не строго спереди, а сбоку, под углом к плоскости его симметрии.

Опере́ние (оперение летательного аппарата, ракеты) — совокупность аэродинамических поверхностей, обеспечивающих устойчивость, управляемость и балансировку самолёта в полёте. Состоит из горизонтального и вертикального оперения. Поскольку все эти элементы расположены в хвостовой части, они также известны, как хвостовое оперение.

Триммер (от англ. trimmer, от trim — приводить в порядок) — небольшая отклоняющаяся поверхность в хвостовой части руля или элерона летательного аппарата. Служит для частичной или полной аэродинамической компенсации шарнирного момента на установившемся режиме полёта, для уменьшения усилий в системе управления.

Крыло в авиационной технике — несущая поверхность, имеющая в сечении по направлению потока профилированную форму и предназначенная для создания аэродинамической подъёмной силы. Крыло самолёта может иметь различную форму в плане, а по размаху — различную форму сечений в плоскостях, параллельных плоскости симметрии самолёта, а также различные углы крутки сечений в указанных плоскостях.

Танга́ж (фр. tangage — килевая качка) — угловое движение летательного аппарата или судна относительно главной (горизонтальной) поперечной оси инерции.

Возду́шный винт (пропе́ллер) — лопастной агрегат работающий в воздушной среде, приводимый во вращение двигателем и являющийся движителем, преобразующим мощность (крутящий момент) двигателя в действующую движущую силу тяги.

Реверс — устройство для направления части воздушной или реактивной струи по направлению движения самолёта и создания таким образом обратной тяги. Кроме того, реверсом называется применяемый режим работы авиационного двигателя, задействующий реверсивное устройство.

Приборная скорость (сокращенно ПР или IAS) — это воздушная скорость, отображаемая на указателе скорости летательного аппарата. Приборная скорость определяется динамическим давлением, замеряемым приёмником воздушного давления.

Сва́ливание в авиации — резкое падение подъёмной силы в результате нарушения нормальных условий обтекания крыла воздушным потоком (срыва потока с крыла).

Руководство по лётной эксплуатации (сокр. РЛЭ) — набор справочных материалов и инструкций, предназначенный для безопасной эксплуатации самолёта. Содержит набор инструкций и специфических для каждого летательного аппарата данных, как то: минимальная и максимальная скорости полёта, максимальный угол атаки, ограничения по алгоритмам взлёта и посадки, устройство и назначение бортовой авионики и т. п. Используется пилотами, штурманами, бортмеханиками и другим авиационным персоналом.

Срыв потока — неконтролируемое нарушение баланса процессов ламинарного и турбулентного характеров в движении газа (жидкости) относительно обтекаемого тела.

Ручка управления самолётом (РУС) — элемент управления самолётом, позволяющий изменять крен и тангаж воздушного судна.РУС относится к элементам ручного управления и обычно располагается между ног пилота на военных самолётах и сбоку на гражданских воздушных судах, в этом случае используют сайдстик (от англ. Side-stick — боковая ручка).

Авторота́ция (др.-греч. αὐτός — сам; лат. rotatio — вращение) — режим вращения воздушного винта летательного аппарата или турбины двигателя, при котором энергия, необходимая для вращения, отбирается от набегающего на винт потока. Термин появился между 1915 и 1920 годами в период начала разработок вертолётов и автожиров и означает вращение несущего винта без участия двигателя.

Аэродинами́ческий то́рмоз, воздушный тормоз — управляемая поверхность летательного аппарата, предназначенная для гашения скорости полёта путём увеличения лобового сопротивления. Также используется в конструкциях скоростных поездов и автомобилей.

Законцовка крыла начинается в том месте, где заканчиваются лонжероны крыла и, как правило, представляет собой полую монококовую/полумонококовую конструкцию, в которой находятся навигационный огонь (огни) и, зачастую, стекатели статических зарядов (молний). Законцовки киля и стабилизатора имеют аналогичную конструкцию.

Штурва́л (нидерл. stuurwiel от stuur «руль» + wiel «колесо») — устройство управления движением плавсредства или летательного аппарата по курсу.

Посадка — завершающий этап полёта воздушного судна, при котором происходит замедление движения воздушного судна с высоты 25 м над уровнем порога ВПП до полной остановки воздушного судна на ВПП.

Ры́скание — угловые движения летательного аппарата, судна, автомобиля относительно вертикальной оси (см. также вертикальная ось самолёта), а также небольшие изменения курса вправо или влево, свойственные судну. Управляет этим вращением руль направления (англ. rudder). Один из трёх углов (крен, тангаж и рыскание), соответствующих трём углам Эйлера, которые задают поворотное положение летательного аппарата относительно его центра. Угол рыскания обозначается буквой ψ (пси).

Крен (от фр. carène — киль, подводная часть судна или от англ. kren-gen — класть судно на бок) — поворот объекта (судна, самолёта, фундамента) вокруг его продольной оси (см. также продольная ось самолёта).

Што́пор в авиации — особый, критический режим полёта самолёта (планёра), заключающийся в его снижении по крутой нисходящей спирали малого радиуса с одновременным вращением относительно всех трёх его осей; неуправляемое движение самолёта на закритических углах атаки. При этом самолёт переходит на режим авторотации. Штопору предшествует потеря скорости и сваливание. В ряде случаев предштопорное состояние самолёта характеризуется предупредительной тряской.

Фюзеля́ж (фр. fuselage, от fuseau — веретено) — корпус летательного аппарата. Связывает между собой консоли крыла, оперение и (иногда) шасси.

Рычаг управления двигателем (РУД) — орган управления тягой двигателя летательного аппарата. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем, перемещение которого регулирует — увеличивает или уменьшает расход топлива.

Скороподъёмность — лётно-техническая характеристика воздушного судна, определяющая его манёвренность в вертикальной плоскости; выражается в скоростных возможностях летательного аппарата при наборе им высоты в полёте и измеряется в метрах в секунду (в странах с футовой системой исчисления высоты — в футах в минуту).

ЦПГО (акроним от Цельноповоротное горизонтальное оперение) или управляемый стабилизатор — полностью отклоняемая поверхность горизонтального оперения летательного аппарата. Данное решение применяется на сверхзвуковых летательных аппаратах и вызвано резким снижением эффективности рулей высоты на сверхзвуковых скоростях полёта.

Несущий (основной) винт — воздушный винт с вертикальной осью вращения, обеспечивающий подъёмную силу винтокрылому летательному аппарату (как правило, вертолётам), позволяющий выполнять управляемый горизонтальный полёт и совершать посадку. Основная функция такого винта — «нести» летательный аппарат, что и отражено в названии. Также его весьма часто называют просто ротором.

Стреловидность крыла — угол отклонения крыла от нормали к оси симметрии самолёта, в проекции на базовую плоскость самолета. При этом положительным считается направление к хвосту.

Стойка — в авиации вертикальный силовой элемент ферменной конструкции фюзеляжа, также может служить для подкрепления и придания жёсткости крыльям и оперению. Кроме того, стойка шасси является основным силовым элементом шасси летательного аппарата, воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата.

Авиагоризо́нт — бортовой гироскопический прибор, используемый в авиации для определения и индикации продольного и поперечного углов наклона летательного аппарата (тангажа и крена), то есть углов ориентации относительно истинной вертикали. Прибор используется лётчиком для управления и стабилизации летательного аппарата в воздухе.

Аэродинамический подхват — непроизвольный (не связанный с действиями лётчиков) рост тангажа (угла атаки) летательного аппарата (ЛА). Эффект подхвата связан с динамической разбалансировкой ЛА по отношению к среде, в которой он перемещается (воздуху).

Глисса́да (от фр. glissade — буквально: «скольжение», производное от glisser — «скользить») — в авиации: траектория полёта летательного аппарата (самолета, вертолета, планера), по которой он снижается, в том числе — непосредственно перед посадкой. Стандартная глиссада начинается на высоте 400 метров и заканчивается на высоте 15 метров.

Взлёт — процесс перехода летательного аппарата или летающего представителя фауны (насекомого, птицы, рукокрылого) в состояние полёта. Взлёт возможен только в том случае, если подъёмная сила больше веса взлетающего объекта.

Гермокабина на самолёте — усиленная часть конструкции фюзеляжа, имеющая систему уплотнений на дверях, люках и сдвижных форточках. На некоторых (военных) самолётах используются так называемые шланги герметизации, в которые в закрытом положении закачивается сжатый воздух, шланг надувается и плотно заполняет все конструктивные пустоты (скажем, входного люка). Все заклёпочные и болтовые соединения в конструкции кабины промазаны при изготовлении герметиком.

Автопилот — устройство или программно-аппаратный комплекс, ведущий транспортное средство по определённой, заданной ему траектории. Наиболее часто автопилоты применяются для управления летательными аппаратами (в связи с тем, что полёт чаще всего происходит в пространстве, не содержащем большого количества препятствий), а также для управления транспортными средствами, движущимися по рельсовым путям.

В авиации фонарь — прозрачная часть пилотской кабины, защищающая экипаж и пассажиров от воздействия встречного потока воздуха, погодных условий и от шума. На большинстве современных летательных аппаратов используются фонари из пластика или стекла обтекаемой формы, чтобы минимизировать лобовое сопротивление воздуха.

«Утка» — аэродинамическая схема, при которой у летательного аппарата (ЛА) горизонтальное оперение расположено впереди основного крыла. Названа так, потому что один из первых самолётов, сделанных по этой схеме — «14-бис» Сантос-Дюмона — напомнил очевидцам утку и был прозван canard.

Кабина лётного экипажа — помещение (отсек) летательного аппарата, где располагаются члены лётного экипажа, органы управления и оборудование, используемые для управления летательным аппаратом в полёте.

Разработка

Братьям Райт приписывают разработку первых практических поверхностей управления. Это основная часть их патента на полет. В отличие от современных рулей использовали перекос крыла. Пытаясь обойти патент Райта, Гленн Кертисс создал шарнирные управляющие поверхности, концепция того же типа была впервые запатентована четырьмя десятилетиями ранее в Соединенном Королевстве. Шарнирные управляющие поверхности имеют то преимущество, что они не вызывают напряжений, которые являются проблемой деформации крыла, и их легче встроить в конструкции.

Оси движения

220px-flight_dynamics_with_text-1775531 Вращение вокруг трех осей 220px-roll_pitch_yaw_mnemonic-svg_-7892212 Мнемоника для запоминания названий углов

Самолет может свободно вращаться вокруг трех осей, которые перпендикулярны друг другу и пересекаются в его центр тяжести (ЦТ). Для управления положением и направлением пилот должен иметь возможность управлять вращением вокруг каждого из них.

Поперечная ось

Поперечная ось, также известная как боковая ось, проходит через самолет от законцовки крыла до законцовки крыла. Вращение вокруг этой оси называется шагом. Шаг изменяет вертикальное направление, на которое указывает нос самолета. рули высоты — это основные управляющие поверхности для тангажа.

Продольная ось

Продольная ось проходит через самолет от носа до хвоста. Вращение вокруг этой оси называется креном. Угловое смещение относительно этой оси называется креном. Пилот изменяет угол крена, увеличивая подъемную силу на одном крыле и уменьшая ее на другом. Этот дифференциальный подъем вызывает вращение вокруг продольной оси. элероны являются основным элементом управления креном. руль направления также оказывает вторичное влияние на крен.

Вертикальная ось

Вертикальная ось проходит через самолет сверху вниз. Вращение вокруг этой оси называется рысканием. Рыскание изменяет направление, в которое указывает нос самолета, влево или вправо. Первичное управление рысканием осуществляется рулем направления. Элероны также оказывают вторичное влияние на рыскание.

Важно отметить, что эти оси перемещаются вместе с самолетом и изменяются относительно земли по мере движения самолета. Например, для самолета, левое крыло которого направлено прямо вниз, его «вертикальная» ось параллельна земле, а его «поперечная» ось перпендикулярна земле.

Оцените статью
RusPilot.com